Acknowledgement
Supported by : Material Research Centre (MRC), Malaviya National Institute of Technology (MNIT)
References
- Al-Ostaz, A., Pal, G., Mantena, P.R. and Cheng, A. (2008), "Molecular dynamics simulation of SWCNT-polymer nanocomposite and its constituents", J. Mater. Sci., 43(1), 164-173. https://doi.org/10.1007/s10853-007-2132-6
- Arash, B., Park, H.S. and Rabczuk, T. (2015), "Tensile fracture behavior of short carbon nanotube reinforced polymer composites: A coarse-grained model", Compos. Struct., 134, 981-988. https://doi.org/10.1016/j.compstruct.2015.09.001
- Arash, B., Park, H.S. and Rabczuk, T. (2016), "Coarse-grained model of the J-integral of carbon nanotube reinforced polymer composites", Carbon, 96, 1084-1092. https://doi.org/10.1016/j.carbon.2015.10.058
- Aydogdu, M. (2014), "On the vibration of aligned carbon nanotube reinforced composite beams", Adv. Nano Res., Int. J., 2(4), 199-210. https://doi.org/10.12989/anr.2014.2.4.199
- Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
- Bower, C., Rosen, R., Jin, L., Han, J. and Zhou, O. (1999), "Deformation of carbon nanotubes in nanotube-polymer composites", Appl. Phys. Lett., 74(22), 3317-3319. https://doi.org/10.1063/1.123330
- Bu, H., Chen, Y., Zou, M., Yi, H., Bi, K. and Ni, Z. (2009), "Atomistic simulations of mechanical properties of graphene nanoribbons", Phys. Lett. A, 373(37), 3359-3362. https://doi.org/10.1016/j.physleta.2009.07.048
- Chen, X.L. and Liu, Y.J. (2004), "Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites", Comput. Mater. Sci., 29(1), 1-11. https://doi.org/10.1016/S0927-0256(03)00090-9
- Cho, J. and Sun, C.T. (2007), "A molecular dynamics simulation study of inclusion size effect on polymeric nanocomposites", Comput. Mater. Sci., 41(4), 54-62. https://doi.org/10.1016/j.commatsci.2007.03.001
- Coleman, J.N., Khan, U., Blau, W.J. and Gun‟ko, Y.K. (2006), "Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites", Carbon, 44(9), 1624-1652. https://doi.org/10.1016/j.carbon.2006.02.038
- Geim, A.K. and Novoselov, K.S. (2007), "The rise of graphene", Nature, 6(3), 183-191. https://doi.org/10.1038/nmat1849
- Ghasemi, H., Rafiee, R., Zhuang, X., Muthu, J. and Rabczuk, T. (2014), "Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multiscale modeling", Comput. Mater. Sci., 85, 295-305. https://doi.org/10.1016/j.commatsci.2014.01.020
- Ghasemi, H., Brighenti, R., Zhuang, X., Muthu, J. and Rabczuk, T. (2015), "Optimal fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach", Struct. Multidiscip. Optim., 51(1), 99-112. https://doi.org/10.1007/s00158-014-1114-y
- Halpin, J.C. (1969), "Effects of environmental factors on composite materials", Technical Report; Air Force Mater. Lab Wright-Patterson AFB OH.
- Hyer, M.W. (1998), Stress Analysis of Fiber-Reinforced Composite Materials, McGraw-Hill, Boston, MA, USA.
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
- Joshi, P. and Upadhyay, S.H. (2014), "Evaluation of elastic properties of multi walled carbon nanotube reinforced composite", Comput. Mater. Sci., 81, 332-338. https://doi.org/10.1016/j.commatsci.2013.08.034
- Joshi, U.A., Sharma, S.C. and Harsha, S.P. (2011), "Analysis of elastic properties of carbon nanotube reinforced nanocomposites with pinhole defects", Comput. Mater. Sci., 50(11), 3245-3256. https://doi.org/10.1016/j.commatsci.2011.06.011
- Kim, H. and Macosko, C.W. (2009), "Processing-property relationships of polycarbonate/graphene composites", Polymer, 50(15), 3797-3809. https://doi.org/10.1016/j.polymer.2009.05.038
- Kondo, D., Sato, S. and Awano, Y. (2008), "Self-organization of novel carbon composite structure: Graphene multi-layers combined perpendicularly with aligned carbon nanotubes", Appl. Phys. Express., 1(7), 0740031-0740033.
- Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S. and Lee, J.H. (2010), "Recent advances in graphene based polymer composites", Prog. Polym. Sci., 35(11), 1350-1375. https://doi.org/10.1016/j.progpolymsci.2010.07.005
- Laurent, C., Flahaut, E. and Peigney, A. (2010), "The weight and density of carbon nanotubes versus the number of walls and diameter", Carbon, 48(10), 2994-2996. https://doi.org/10.1016/j.carbon.2010.04.010
- Li, C. and Chou, T.-W. (2009), "Failure of carbon nanotube/polymer composites and the effect of nanotube waviness", Compos. Part A: Appl. Sci. Manuf., 40(10), 1580-1586. https://doi.org/10.1016/j.compositesa.2009.07.002
- Liu, Y.J. and Chen, X.L. (2003a), "Continuum models of carbon nanotube-based composites using the boundary element method", Electron. J. Bound. Elem., 1(2), 316-335.
- Liu, Y.J. and Chen, X.L. (2003b), "Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element", Mech. Mater., 35(1-2), 69-81. https://doi.org/10.1016/S0167-6636(02)00200-4
- Mousavi, A.A., Arash, B., Zhuang, X. and Rabczuk, T. (2016), "A coarse-grained model for the elastic properties of cross linked short carbon nanotube/polymer composites", Compos. Part B: Eng., 95, 404-411. https://doi.org/10.1016/j.compositesb.2016.03.044
- Potts, J.R., Dreyer, D.R., Bielawski, C.W. and Ruoff, R.S. (2011), "Graphene-based polymer nanocomposites", Polymer, 52(1), 5-25. https://doi.org/10.1016/j.polymer.2010.11.042
- Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites", Appl. Phys. Lett., 76(20), 2868-2870. https://doi.org/10.1063/1.126500
- Reith, D., Meyer, H. and Muller-Plathe, F. (2001), "Mapping atomistic to coarse-grained polymer models using automatic simplex optimization to fit structural properties", Macromolecules, 34(7), 2335-2345. https://doi.org/10.1021/ma001499k
- Reith, D., Putz, M. and Mller-Plathe, F. (2003), "Deriving effective mesoscale potentials from atomistic simulations", J. Comput. Chem., 24(13), 1624-1636. https://doi.org/10.1002/jcc.10307
- Ru, C.Q. (2001), "Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium", J. Mech. Phys. Solids, 49(6), 1265-1279. https://doi.org/10.1016/S0022-5096(00)00079-X
- Ruoff, R.S., Qian, D. and Liu, W.K. (2003), "Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements", Comptes. Rendus. Phys., 4(9), 993-1008. https://doi.org/10.1016/j.crhy.2003.08.001
- Rzepiela, A.J., Louhivuori, M., Peter, C. and Marrink, S.J. (2011), "Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites", Phys. Chem. Chem. Phys., 13(22), 10437-10448. https://doi.org/10.1039/c0cp02981e
- Sakhaee-Pour, A. (2009), "Elastic properties of single-layered graphene sheet", Solid State Commun., 149(1-2), 91-95. https://doi.org/10.1016/j.ssc.2008.09.050
- Salvetat, J.-P., Briggs, G. and Bonard, J.-M. (1999), "Elastic and shear moduli of single-walled carbon nanotube ropes", Phys. Rev. Lett., 82(5), 944-947. https://doi.org/10.1103/PhysRevLett.82.944
- Sears, A. and Batra, R.C. (2004), "Macroscopic properties of carbon nanotubes from molecular-mechanics simulations", Phys. Rev. B, 69(23), 235406. https://doi.org/10.1103/PhysRevB.69.235406
- Segurado, J., Gonzalez, C. and LLorca, J. (2003), "A numerical investigation of the effect of particle clustering on the mechanical properties of composites", Acta Mater., 51(8), 2355-2369. https://doi.org/10.1016/S1359-6454(03)00043-0
- Semmah, A., Beg, O.A., Mahmoud, S.R., Heireche, H. and Tounsi, A. (2014), "Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model", Adv. Mater. Res., Int. J., 3(2), 77-89.
- Shokrieh, M.M. and Rafiee, R. (2010a), "Prediction of Young‟s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach", Mater. Des., 31(2), 790-795. https://doi.org/10.1016/j.matdes.2009.07.058
- Shokrieh, M.M. and Rafiee, R. (2010b), "On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region", Compos. Struct., 92(3), 647-652. https://doi.org/10.1016/j.compstruct.2009.09.033
- Silani, M., Ziaei-Rad, S., Talebi, H. and Rabczuk, T. (2014), "A semi-concurrent multiscale approach for modeling damage in nanocomposites", Theor. Appl. Fract. Mech., 74, 30-38. https://doi.org/10.1016/j.tafmec.2014.06.009
- Sohlberg, K., Sumpter, B.G., Tuzun, R.E. and Noid, D.W. (1998), "Continuum methods of mechanics as a simplified approach to structural engineering of nanostructures", Nanotechnology, 9(1), 30-36. https://doi.org/10.1088/0957-4484/9/1/004
- Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S. (2006), "Graphene-based composite materials", Nature, 442(7100), 282-286. https://doi.org/10.1038/nature04969
- Sun, C.T. and Vaidya, R.S. (1996), "Prediction of composite properties from a representative volume element", Compos. Sci. Technol., 56(2), 171-179. https://doi.org/10.1016/0266-3538(95)00141-7
- Talebi, H., Silani, M., Bordas, S.P.A., Kerfriden, P. and Rabczuk, T. (2014), "A computational library for multiscale modeling of material failure", Comput. Mech., 53(5), 1047-1071. https://doi.org/10.1007/s00466-013-0948-2
- Tsai, J.-L. and Tu, J.-F. (2010), "Characterizing mechanical properties of graphite using molecular dynamics simulation", Mater. Des., 31(1), 194-199. https://doi.org/10.1016/j.matdes.2009.06.032
- Vu-Bac, N., Rafiee, R., Zhuang, X., Lahmer, T. and Rabczuk, T. (2015a), "Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters", Compos. Part B: Eng., 68, 446-464. https://doi.org/10.1016/j.compositesb.2014.09.008
- Vu-Bac, N., Silani, M., Lahmer, T., Zhuang, X. and Rabczuk, T. (2015b), "A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites", Comput. Mater. Sci., 96, 520-535. https://doi.org/10.1016/j.commatsci.2014.04.066
- Wang, Q., Dai, J., Li, W., Wei, Z. and Jiang, J. (2008), "The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites", Compos. Sci. Technol., 68(7-8), 1644-1648. https://doi.org/10.1016/j.compscitech.2008.02.024
- Wong, E.W., Sheehan, P.E. and Lieber, C.M. (1997), "Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes", Science, 277(5334), 1971-1975. https://doi.org/10.1126/science.277.5334.1971
- Xu, Y., Bai, H., Lu, G., Li, C. and Shi, G. (2008), "Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets", J. Am. Chem. Soc., 130(18), 5856-5857. https://doi.org/10.1021/ja800745y
- Zhang, Y., Zhuang, X., Muthu, J., Mabrouki, T., Fontaine, M., Gong, Y. and Rabczuk, T. (2014), "Load transfer of graphene / carbon nanotube / polyethylene hybrid nanocomposite by molecular dynamics simulation", Compos. Part B, 63, 27-33. https://doi.org/10.1016/j.compositesb.2014.03.009
- Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. and Ruoff, R.S. (2010), "Graphene and graphene oxide: Synthesis, properties, and applications", Adv. Mater., 22(35), 3906-3924. https://doi.org/10.1002/adma.201001068
Cited by
- A continuum model to study interphase effects on elastic properties of CNT/GS-nanocomposite vol.4, pp.2, 2017, https://doi.org/10.1088/2053-1591/aa5dd2
- The computation of bending eigenfrequencies of single-walled carbon nanotubes based on the nonlocal theory vol.9, pp.2, 2018, https://doi.org/10.5194/ms-9-349-2018
- Crack growth analysis of carbon nanotube reinforced polymer nanocomposite using extended finite element method pp.2041-2983, 2018, https://doi.org/10.1177/0954406218776034
- Proper-Orthogonal-Decomposition-Based Buckling Analysis and Optimization of Hybrid Fiber Composite Shells vol.56, pp.5, 2018, https://doi.org/10.2514/1.J056920
- Comparison of different cylindrical shell theories for stability of nanocomposite piezoelectric separators containing rotating fluid considering structural damping vol.23, pp.6, 2016, https://doi.org/10.12989/scs.2017.23.6.691
- Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model vol.27, pp.3, 2016, https://doi.org/10.12989/scs.2018.27.3.255
- Postbuckling behavior of functionally graded CNT-reinforced nanocomposite plate with interphase effect vol.8, pp.1, 2016, https://doi.org/10.1515/nleng-2017-0133
- Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory vol.6, pp.1, 2019, https://doi.org/10.12989/aas.2019.6.1.001
- Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene vol.31, pp.5, 2019, https://doi.org/10.12989/scs.2019.31.5.529
- On axial buckling and post-buckling of geometrically imperfect single-layer graphene sheets vol.33, pp.2, 2016, https://doi.org/10.12989/scs.2019.33.2.261
- Concurrent Patch Optimization of Hybrid Composite Plates Based on Proper Orthogonal Decomposition vol.57, pp.11, 2019, https://doi.org/10.2514/1.j058064
- Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.717
- Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.261
- Representative Volume Element for Mechanical Properties of Carbon Nanotube Nanocomposites Using Stochastic Finite Element Analysis vol.142, pp.3, 2016, https://doi.org/10.1115/1.4045708
- A multiscale homogenization procedure to predict the elasto-viscoplastic behavior of polymer-based nanocomposites vol.29, pp.9, 2016, https://doi.org/10.1177/09673911211023305