References
- Al-Ansari, L.S. (2012), "Calculating of natural frequency of stepping cantilever beam", International J. Mech. Mechatron. Eng., 12(5), 59-68.
- Aminbaghai, M., Murin, J. and Kuti, V. (2012), "Modal analysis of the FGM-beams with continuous transversal symmetricand longitudinal variation of material properties with effect of large axial force", Eng. Struct., 34, 314-329. https://doi.org/10.1016/j.engstruct.2011.09.022
- Aydin, K. (2013), "Free vibration of functionally graded beams with arbitrary number of surface cracks", Euro. J. Mech. A/Solids, 42, 112-124. https://doi.org/10.1016/j.euromechsol.2013.05.002
- Biot, M.A. (1964), "Theory of buckling of a porous slab and its thermoelastic analogy", J. Appl. Mech., 31(2), 194-198. https://doi.org/10.1115/1.3629586
- Ghassemi, A. (2007), "Stress and pore pressure distribution around a pressurized, cooled crack in low permeability rock", Proceedings of the 32nd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, January-February.
- Ghassemi, A. and Zhang, Q. (2004), "A transient fictitious stress boundary element method for porothermoelastic media", Eng. Anal. Boundary Elem., 28(11), 1363-1373. https://doi.org/10.1016/j.enganabound.2004.05.003
- Jabbari, M., Mojahedin, A., Khorshidvand, A.R. and Eslami, M.R. (2014a), "Buckling analysis of a functionally graded thin circular plate made of saturated porous materials", J. Eng. Mech., 140(2), 287-295. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000663
- Jabbari, M., Hashemitaheri, M., Mojahedin, A. and Eslami, M.R. (2014b), "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials", J. Therm. Stresses, 37(2), 202-220. https://doi.org/10.1080/01495739.2013.839768
- Jabbari, M., Farzaneh Joubaneh, E. and Mojahedin, A. (2014c), "Thermal buckling analysis of porous circular plate with piezoelectric actuators based on first order shear deformation theory", Int. J.Mech. Sci., 83, 57-64. https://doi.org/10.1016/j.ijmecsci.2014.03.024
- Jabbari, M., Mojahedin, A. and Farzaneh Joubaneh, E. (2014d), "Thermal buckling analysis of circular plates made of piezoelectric and saturated porous functionally graded material layers", J. Eng. Mech., 141(4), 287-295.
- Jabbari, M., Mojahedin, A. and Haghi, M. (2014e), "Buckling analysis of thin circular FG plates made of saturated porous-softferro magnetic materials in transverse magnetic field", Thin-Wall. Struct., 85, 50-56. https://doi.org/10.1016/j.tws.2014.07.018
- Jabbari, M., Haghi, M. and Mojahedin, A. (2014f), "Buckling analysis of thin rectangular FG plates made of saturated porous-softferro magnetic materials in transverse magnetic field", J. Solid Mechanics, 85, 50-56.
- Jasion, P., Magnucka-Blandzi, E., Szyc, W. and Magnucki, K. (2012), "Global and local buckling of sandwich circular and beam-rectangular plates with metal foam core", Thin-Wall. Struct., 61, 154-161. https://doi.org/10.1016/j.tws.2012.04.013
- Komijani, M., Esfahani, S.E., Reddy, J.N., Liu, Y.P. and Eslami, M.R. (2014), "Nonlinear thermal stability and vibration of pre/post-buckled temperature and microstructure dependent FGM beams resting on elastic foundation", Compos. Struct., 112, 297-307.
- Li, S.R., Cao, D.F. and Wan, Z.Q. (2013), "Bending solutions of FGM Timoshenko beams from those of the homogenous Euler-Bernoulli beams", Appl. Math. Model., 37(10-11), 7077-7085. https://doi.org/10.1016/j.apm.2013.02.047
- Magnucka-Blandzi, E. (2008), "Axi-symmetrical deflection and buckling of circular porous-cellular plate", Thin-Wall. Struct., 46(3), 333-337. https://doi.org/10.1016/j.tws.2007.06.006
- Magnucka-Blandzi, E. (2009), "Dynamic stability of a metal foam circular plate", J. Theor. Appl. Mech., 47(2), 421-433.
- Magnucka-Blandzi, E. (2011), "Mathematical modeling of a rectangular sandwich plate with metal foam core", J. Theor. Appl. Mech., 49(2), 439-455.
- Magnucki, K. and Stasiewicz, P. (2004), "Elastic buckling of a porous beam", J. Theor. Appl. Mech., 42(4), 859-868.
- Magnucki, K., Malinowski, M. and Kasprzak, J. (2006), "Bending and buckling of a rectangular porous plate", Steel Compos. Struct., Int. J., 6(4), 319-333. https://doi.org/10.12989/scs.2006.6.4.319
- Magnucki, K., Jasion, P., Magnucka-Blandzi, E. and Wasilewicz, P. (2014), "Theoretical and experimental study of a sandwich circular plate under pure bending", Thin-Wall. Struct., 79, 1-7. https://doi.org/10.1016/j.tws.2014.01.029
- Mojahedin, A., Farzaneh Joubaneh, E. and Jabbari, M. (2014), "Thermal and mechanical stability of a circular porous plate with piezoelectric actuators", Acta Mecanica., 225(12), 3437-3452. https://doi.org/10.1007/s00707-014-1153-x
- Murin, J., Aminbaghai, M. and Kuti, V. (2010), "Exact solution of the bending vibration problem of FGM beams with variation of material properties", Eng. Struct., 32, 1631-1640. https://doi.org/10.1016/j.engstruct.2010.02.010
- Murin, J., Aminbaghai, M., Hrabovsky, J., Kuti, V. and Kugler, S. (2012), "Modal analysis of the FGM beams with effect of the shear correction function", Compos.: Part B, 45, 1575-1582.
- Rong, L.S. and Liang, F.L. (2014), "Free vibration of FGM Timoshenko beams with through-width delamination", Sci. China Phys. Mech. Astron., 57(5), 927-934. https://doi.org/10.1007/s11433-013-5248-5
- Wattanasakulpong, N. and Ungbhakorn, V. (2012), "Free vibration analysis of functionally graded beams with general elastically end constraints by DTM", World J. Mech., 2(6), 297-310. https://doi.org/10.4236/wjm.2012.26036
- Wei, D., Liu, Y. and Xiang, Z. (2011), "An analytical method for free vibration analysis of functionally graded beams with edge cracks", J. Sound Vib., 331(7), 1686-1700. https://doi.org/10.1016/j.jsv.2011.11.020
- Ziane, N., Meftah, S.A., Belhadj, H.A., Tounsi, A. and Bedia, A.A. (2012), "Free vibration analysis of thin and thick-walled FGM box beams", Int. J. Mech. Sci., 66, 273-282.
- Zimmerman, R.W. (2000), "Coupling in poroelasticity and thermoelasticity", Int. J. Rock Mech. Mining. Sci., 37(1-2), 79-87. https://doi.org/10.1016/S1365-1609(99)00094-5
Cited by
- Vibrations of longitudinally traveling functionally graded material plates with porosities vol.66, 2017, https://doi.org/10.1016/j.euromechsol.2017.06.006
- On vibrations of porous nanotubes vol.125, 2018, https://doi.org/10.1016/j.ijengsci.2017.12.009
- Non-linear study of mode II delamination fracture in functionally graded beams vol.23, pp.3, 2016, https://doi.org/10.12989/scs.2017.23.3.263
- Geometrically nonlinear analysis of functionally graded porous beams vol.27, pp.1, 2016, https://doi.org/10.12989/was.2018.27.1.059
- Free vibration of imperfect sigmoid and power law functionally graded beams vol.30, pp.6, 2019, https://doi.org/10.12989/scs.2019.30.6.603
- Free vibration of AFG beams with elastic end restraints vol.33, pp.3, 2016, https://doi.org/10.12989/scs.2019.33.3.403
- Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models vol.36, pp.3, 2016, https://doi.org/10.12989/scs.2020.36.3.293
- Peridynamic analysis of dynamic fracture behaviors in FGMs with different gradient directions vol.75, pp.3, 2016, https://doi.org/10.12989/sem.2020.75.3.339
- Axisymmetric vibration analysis of graded porous Mindlin circular plates subjected to thermal environment vol.16, pp.3, 2016, https://doi.org/10.2140/jomms.2021.16.371
- Quasi-3D Refined Theory for Functionally Graded Porous Plates: Vibration Analysis vol.24, pp.3, 2016, https://doi.org/10.1134/s1029959921030036
- A deep energy method for functionally graded porous beams vol.22, pp.6, 2016, https://doi.org/10.1631/jzus.a2000317
- Nonlinear buckling analysis of FGP shallow spherical shells under thermomechanical condition vol.40, pp.4, 2016, https://doi.org/10.12989/scs.2021.40.4.555