DOI QR코드

DOI QR Code

Characterization of Cellulase Gene (MsGHF45) from Monochamus saltuarius Expressed in Yeast

효모에 발현된 북방수염하늘소(Monochamus saltuarius) Cellulase gene MsGHF45의 특성에 관한 연구

  • Ko, Hyeon-Jin (Department of Biomedical Sciences, Kangwon National University) ;
  • Ko, Hyunjun (Department of Biomedical Sciences, Kangwon National University) ;
  • Hong, Soon-Kwan (Department of Biomedical Sciences, Kangwon National University) ;
  • Park, Yong Chul (Department of Biomedical Sciences, Kangwon National University)
  • 고현진 (강원대학교 의생명과학과) ;
  • 고현준 (강원대학교 의생명과학과) ;
  • 홍순관 (강원대학교 의생명과학과) ;
  • 박용철 (강원대학교 의생명과학과)
  • Received : 2016.02.15
  • Accepted : 2016.05.03
  • Published : 2016.06.30

Abstract

In this study, the cellulase of Monochamus saltuarius (MsGHF45) gene was introduced in Kluyveromyces lactis, successfully. The molecular weight of recombinant enzyme was determined by SDS-PAGE and western blotting. The enzymatic activity was confirmed by native-PAGE containing carboxymethyl cellulose as a substrate. The optimul pH and temperature of recombinant MsGHF45 was pH5 and $40^{\circ}C$. The barium ($Ba^{2+}$) and ferrous ($Fe^{2+}$) enhanced enzyme activity, and the mercuty ($Hg^{2+}$) inhibited its activity.

화석연료의 고갈 문제로 인하여 다양한 대체에너지가 개발 중이며 본 연구에서는 바이오에탄올 연구의 초석으로 사용하기 위해 곤충의 효소를 연구하였다. 북방수염하늘소(Monochamus saltuarius Gebler)가 지닌 cellulase (MsGHF45) 유전자를 Kluyveromyces lactis에 형질전환 시켰다. 형질전환 된 효모는 활성이 있는 cellulase 효소를 성공적으로 생산하였다. 재조합 MsGHF45의 분자량은 SDS-PAGE와 western blot을 통하여 확인하였다. 효소의 활성은 기질로써 carboxymethyl cellulose를 첨가한 native-PAGE를 통해서 검증하였다. 효소 활성의 최적조건을 알아본 결과, pH는 5에서, 온도는 $40^{\circ}C$에서 나타났다. 바륨이온($Ba^{2+}$)과 철이온($Fe^{2+}$)은 효소활성을 저해하지 않았으나, 칼슘이온($Ca^{2+}$), 코발트이온($Co^{2+}$), 구리이온($Cu^{2+}$), 수은이온($Hg^{2+}$), 마그네슘이온($Mg^{2+}$), 망간이온($Mn^{2+}$) 그리고 아연이온($Zn^{2+}$)은 활성을 저해하였다. 특히, 수은이온은 효소활성을 66.5% 감소시켰다. 본 연구는 다양한 효소를 이용한 biofuel 연구에 참고자료로 사용될 것이다.

Keywords

References

  1. Dresselhaus, M.S. and Thomas, I.L. 2001. Alternative energy technologies. Nature. 414: 332-337. https://doi.org/10.1038/35104599
  2. Fischer, R., Raluca, O., and Twyman, R.M. 2013. Cellulases from insects. Yellow Biotechnology II. Springer Berlin Heidelberg 136: 51-64.
  3. Kim, N., Choo, Y.M., Lee, K.S., Hong, S.J., Seol, K.Y., Je, Y.H., Sohn, H.D., and Jin, B.R. 2008. Molecular cloning and characterization of a glycosyl hydrolase family 9 cellulase distributed throhout the digestive tract of the cricket Teleogryllus emma. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 150.4: 368-376. https://doi.org/10.1016/j.cbpb.2008.04.005
  4. Laemmli, U.K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  5. Lee, S.J., Kim, S.R., Yoon, H.J., Kim, I., Lee, K.S., Je, Y.H., Lee, S.M., Seo, S.J., Sohn, H.D., and Jin, B.R. 2004. cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle, Apriona germari. Comparative biochemistry and physiology, Part B. 139: 107-116. https://doi.org/10.1016/j.cbpc.2004.06.015
  6. Liu, D., Zhang, R., Yang, X., Zhang, Z., Song, S., Miao, Y., Shen, Q. 2012. Characterization of a thermostable ${\beta}$-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X33. Microbial cell factories 11: 1-15. https://doi.org/10.1186/1475-2859-11-1
  7. Lynd, L.R., Cushman, J.H., Bichols, R.J., and Wyma, C.E. 1991. Fuel ethanol from cellulosic biomass. Science 251: 1318-1323. https://doi.org/10.1126/science.251.4999.1318
  8. Maki, M., Kam, T.L., and Wensheng, Q. 2009. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. International Journal of Biological Sciences 5.5: 500.
  9. Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sar. Analytical chemistry 31.3: 426-428. https://doi.org/10.1021/ac60147a030
  10. Naika, G.S., Purnima, K., and Vishweshwaraiah, P. 2007. Purification and characterization of a new endoglucanase from Aspergillus aculeatus. Journal of agricultural and food chemistry 55.18: 7566-7572. https://doi.org/10.1021/jf070710p
  11. Ni, J., Tokuda, G., Takehara, M., and Watanabe, H. 2007. Heterologous expression and enzymatic characterization of ${\beta}$-glucosidase from the drywood-eating termite, Neotermes koshunensis. Applied entomology and zoology 42: 457-463. https://doi.org/10.1303/aez.2007.457
  12. Pham, T.H., Quyen, D.T., and Nghiem, N.M. 2012. Purification and properties of an endoglucanase from Aspergillus niger VTCC-F021. Turkish journal of biology 36: 694-701.
  13. Selten, G.C.M., Swinkels, B.W., and Van Gorcom, R.F.M. 2000. Selection marker gene free recombinant strains: method for obtaining them and the use of these strains. United States patent. 6,051,431.
  14. Simura, M., Watanabe, H., Lo, N., and Saito, H. 2003. Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. European fournal of biochemistry 270: 3455-3460. https://doi.org/10.1046/j.1432-1033.2003.03735.x
  15. Tao, Y.M., Zhu, X,Z., Huang, J.Z., Ma, S.J., Wu, X.B., Long, M.N., and Chen, Q.X. 2010. Purification and properties of endoglucanase from a ser cane bagasse hydrolyzing stain, Aspergillus glaucuc XC9. Journal of agricultural and food chemistry 58: 6126-6130. https://doi.org/10.1021/jf1003896
  16. Wei, Y.D., Lee, K.S., Gui, Z.Z., Yoon, H.J., Kim, I., Zhang, G.Z., Guo, X., Sohn, H.D., and Jin, B.R. 2006. Molecular cloning, expression, and enzymatic activity of a novel endogenous cellulase from the mulberry longicorn beetle, Apriona germari. Comparative biochemistry and physiology, Part B. 145: 748-756.
  17. Willis, J.D., Oppert, C., and Jurat-fuentes, J.L. 2010. Methods for discovery and characterization of cellulytic enzymes from insects. Insect science 00: 1-15.
  18. Wyman, C.E. 2007. What is (and is not) vital to advancing cellulosic ethanol. TRENDS in Biotechnology 25.4: 153-157. https://doi.org/10.1016/j.tibtech.2007.02.009
  19. Yamada, R., Taniguchi N., Tanaka, T., Ogino, C., Fukuda, H., and Kondo, A. 2010. Cocktail d-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microbial Cell Factories 9: 30. https://doi.org/10.1186/1475-2859-9-30
  20. Yamada, R., Taniguchi N., Tanaka, T., Ogino, C., Fukuda, H., and Kondo, A. 2011. Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnology for biofuels 4: 8. https://doi.org/10.1186/1754-6834-4-8
  21. Yanase, S., Hasunuma, T., Yamada, R., Tanaka, T., Ogino, C., Fukuda, H., and Kondo, A. 2010. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Applied Microbiology and Biotechnology 88: 381-388. https://doi.org/10.1007/s00253-010-2784-z
  22. Zhou, X., Smith, J.A., Oi, F.M., Koehler, P.G., Bennett, G.W., and Scharf, M.E. 2007. Correlation of cellulase gene expression and cellulolytic activity throhout the gut of the termite Reticulitermes flacipes. Gene 395: 29-39. https://doi.org/10.1016/j.gene.2007.01.004