DOI QR코드

DOI QR Code

Soil Physicochemical Properties of Tree Plantations in a Fire-disturbed Forest and an Undisturbed Stand in Ulsan Metropolitan City

울산광역시 산불피해지의 조림지와 미피해지의 토양 이화학적 특성

  • Kim, Choonsig (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Jo, Chang-Gyu (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Baek, Gyeongwon (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Park, Seong-Wan (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Cho, Hyun-Seo (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Ma, Ho-Seop (Department of Forest Environmental Resources, Gyeongsang National University)
  • 김춘식 (경남과학기술대학교 산림자원학과) ;
  • 조창규 (경남과학기술대학교 산림자원학과) ;
  • 백경원 (경남과학기술대학교 산림자원학과) ;
  • 박성완 (경남과학기술대학교 산림자원학과) ;
  • 조현서 (경남과학기술대학교 산림자원학과) ;
  • 마호섭 (경상대학교 산림환경자원학과)
  • Received : 2016.02.05
  • Accepted : 2016.03.29
  • Published : 2016.06.30

Abstract

This study was carried out to compare soil physicochemical properties and nutrient concentrations of tree leaf between planted forests following forest fire and an undisturbed forest in the Bongdaesan mountain, where is located in the Ulsan metropolitan city. We established three deciduous tree planting (Liriodendron tulipifera L., Prunus yedoensis Matsum and Quercus acutissima Carruth.) plots, one unplanted plot following four-year forest fire and one undisturbed plot (Pinus densiflora S et. Z). Carbon (C) stocks in the organic horizon were significantly lower in the tree planted plots ($2394-3551kg{\cdot}C{\cdot}ha^{-1}$) or the unplanted plots ($3689kg{\cdot}C{\cdot}ha^{-1}$) than in the undisturbed plot ($9388kg{\cdot}C{\cdot}ha^{-1}$). However, phosphorus (P), potassium (K) and magnesium (Mg) stocks in the organic horizon were not significantly different among the treatments. Soil water phase and soil pH were significantly higher in the P. yedoensis plot (water phase: 13.7-18.4%; soil pH: 4.62- 4.80) than in the undisturbed plots (water phase: 7.0%; soil pH: 4.10). Soil organic C concentration was slightly higher in the tree planted plots (1.89-3.60%) than in the unplanted (1.41%) plots. Soil Ca and Mg stocks at 10 cm of soil depth were significantly higher in the P. yedoensis and L. tulipifera plots than in the unplanted or undisturbed plots. Nutrient concentrations (Ca and Mg) of leaf were significantly higher in the L. tulipifera than in the Q. acutissima and the undisturbed pine plots. The results indicate that P, Ca, and Mg stocks in the organic horizon was not affected by tree planting, but Ca and Mg stocks at 10 cm of the soil depth were enhanced by the tree species established following four-year forest fire.

본 연구는 울산광역시에 위치한 봉대산을 대상으로 산불피해 4년 후 인공조림 활엽수임분(튤립나무, 왕벚나무, 상수리나무조림지), 미복구지, 인접 미피해 소나무임분의 유기물층 및 토양층의 이화학적 특성과 조림목의 잎 내 양분함량을 조사하였다. 유기물층의 탄소 축적량은 미피해 소나무임분이 $9388kg{\cdot}C{\cdot}ha^{-1}$로, 활엽수임분 $2394{\sim}3551kg{\cdot}C{\cdot}ha^{-1}$ 나, 미복구지 $3689kg{\cdot}C{\cdot}ha^{-1}$ 에 비해 유의적으로(P < 0.05) 높았다. 그러나 인, 칼슘, 마그네슘 축적량은 활엽수임분과 미피해 소나무임분 사이에 유의적인 차가 없었다(P > 0.05). 토양 이화학적 특성 중 왕벚나무조림지의 액상과 토양 pH는 18.4%와 pH 4.80로, 미피해 소나무임분 7.0%와 토양 pH 4.10에 비해 유의적으로 높았다. 토양 유기탄소함량은 인공조림 활엽수임분이 1.89~3.60%로 미복구지 1.41%에 비해 증가하는 경향을 보이나 유의적인 차는 없었다. 토양 칼슘과 마그네슘 축적량의 경우 튤립나무와 왕벚나무조림지가 미피해 소나무임분과 미복구지에 비해 유의적으로 높은 값을 보였다. 잎 내 양분함량 중 칼슘이나 마그네슘함량은 튤립나무(칼슘: 1.10%; 마그네슘: 0.37%)가 상수리나무(칼슘: 0.50%; 마그네슘: 0.14%)나 인접 미피해 소나무 잎(칼슘: 0.33%; 마그네슘: 0.10%)에 비해 유의적으로 높게 나타났다. 본 연구결과에 따르면 산불발생 4년 이내 초기단계 결과이지만, 유기물층의 인, 칼슘, 마그네슘축적량은 미피해 산림지역과 유의적인 차이는 없었으나, 토양층의 칼슘과 마그네슘 축적량은 식재수종의 영향이 큰 것으로 나타났다.

Keywords

References

  1. Brady, N.C. and Weil, R.R. 2010. Elements of the Nature and Properties of Soils. Pearson. pp. 614.
  2. Certini, G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143, 1-10. https://doi.org/10.1007/s00442-004-1788-8
  3. Covington, W.W. and Sackett, S.S. 1984. The effects of a prescribed burn in southwestern ponderosa pine on organic matter and nutrients in woody debris and forest floor. Forest Science 30: 183-192.
  4. Fisher, R.F. and Binkley, D. 2000. Ecology and management of forest soils. 3rd edition. John Wiley & Sons, New York. pp. 489.
  5. Heneghan, L., Miller, S.P., Baer, S., Callaham, Jr M.S., Montgomery, J., Pavao-Zuckerman, M., Rhoades, C.C., and Richardson, S. 2008. Integrating soil ecological knowledge into restoration management. Restoration Ecology 16: 608-617. https://doi.org/10.1111/j.1526-100X.2008.00477.x
  6. Jeong, J., Kim, C., Goo, K., Lee, C., Won, H., and Byun, J. 2003. Physico-chemical properties of Korean forest soils by parent rocks. Journal of Korean Forest Society 92: 254-262.
  7. Kalra, Y.P. and Maynard, D.G. 1991. Methods manual for forest soil and plant analysis. For. Can., Northwest Reg. North. For. Cent., Edmonton, Alberta, Information Report NORX-319. pp. 116.
  8. Kim, C., Lee, W.K. Byun, J.K., Kim, Y.K., and Jeong, J.H. 1999. Short-term effects of fire on soil properties in Pinus densiflora stands. Journal of Forest Research 4: 23-25. https://doi.org/10.1007/BF02760320
  9. Kim, C., Jeong, J., Park, J.H., and Ma, H.S. 2015. Growth and nutrient status of foliage as affected by tree species and fertilization in a fire-disturbed urban forest. Forests 6: 2199-2213. https://doi.org/10.3390/f6062199
  10. Lee, W.K, Kim, C., Cha, S.H., Kim, Y.K., Byun, J.K., Koo, K.S., and Park, J.W. 1997. Fire effects on soil physical and chemical properties following the forest fire in Kosung. Korean Journal of Ecology 20: 157-162.
  11. McPhearson, P.T., Feller, M., Felson, A., Karty, R., Lu, J.W.T., Palmer, M.I., and Wenskus, T. 2010. Assessing the effects of the urban forest restoration effort of million trees NYC on the structure and functioning of New York city ecosystems. Cities and the Environment 3: 1-21.
  12. Meyer, V.F., Redente, E.F., Barbarick, K.A., Brobst, R.B., Paschke, M.W., and Miller, A.L. 2004. Plant and soil responses to biosolids application following forest fire. Journal of Environmental Quality 33: 873-881. https://doi.org/10.2134/jeq2004.0873
  13. National Institute of Forest Science. 2010. Establishment of Restoration Strategy by Landscape Ecological Techniques in Forest Fire Area. Research Report 10-30. pp. 99.
  14. Neary, D.G., Ryan, K.C., and DeBano, L.F. 2005. Wildland fire in ecosystems: effects of fire on soil and water. Gen. Tech. Rep. RMRS-GTR-42-COl4. Ogden, UT, USA. pp. 250.
  15. Oldfield, E.E., Felson, A.J., Wood, S.A., Hallett, R.A., Strickland, M.S., and Bradford, M.A. 2014. Positive effects of afforestation efforts on the health of urban soils. Forest Ecology and Management 313: 266-273. https://doi.org/10.1016/j.foreco.2013.11.027
  16. Pavao-Zuckerman, M.A. 2008. The nature of urban soils and their role in ecological restoration in cities. Restoration Ecology 16: 642-649. https://doi.org/10.1111/j.1526-100X.2008.00486.x
  17. SAS. 2003. SAS/STAT User's Guide; Version 9.1. SAS Institute, Cary, NC. pp. 5136.
  18. Thom, D. and Seidl, R. 2015. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biological Reviews. doi:10.1111/brv.12193.
  19. Yang, J., McBride, J., Zhou, J., and Sun, Z. 2005. The urban forest in Beijing and its role in air pollution reduction. Urban Forest and Urban Greening 3: 65-78. https://doi.org/10.1016/j.ufug.2004.09.001
  20. Won, H.K., Lee, Y.Y., Jeong, J.H., Koo, K.S., Lee, C.H., Lee, S.W., Jeong, Y.H., Kim, C., and Kim, H. 2006. Fertilization effects on soil properties, understory vegetation structure and growth of Pinus densiflora seedlings planted after forest fire. Journal of Korean Forest Society 95: 334-341.

Cited by

  1. 조림지 시비 처리에 따른 리기다소나무 벌채지 내 식재 6년 후 느티나무 조림지 토양 및 조림목 생장 특성 vol.108, pp.1, 2019, https://doi.org/10.14578/jkfs.2019.108.1.29