DOI QR코드

DOI QR Code

Deflection of battened beams with shear and discrete effects

  • Li, Ji-liang (The Faculty of Mechanical Engineering and Mechanics, Ningbo University) ;
  • Chen, Jian-kang (The Faculty of Mechanical Engineering and Mechanics, Ningbo University)
  • 투고 : 2015.09.11
  • 심사 : 2016.06.29
  • 발행 : 2016.09.10

초록

This paper presents a theoretical analysis for determining the transverse deflection of simply supported battened beams subjected to a uniformly distributed transverse quasi-static load. The analysis considers not only the shear effect but also the discrete effect of battens on the transverse deflection of the battened beam. The analytical solution is obtained using the principle of minimum potential energy. Numerical validation of the present analytical solution is accomplished using finite element methods. The present analytical solution shows that the shear effect on the transverse deflection of battened beams increases with the cross-section area of the main member but decreases with the cross-section area of the batten. The longer the battened beam is, or the larger the moment of inertia of the main member is, the smaller the shear effect will be.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China

참고문헌

  1. Adamek, V. and Vales, F. (2015), "Analytical solution for a heterogeneous Timoshenko beam subjected to an arbitrary dynamic transverse load", Eur. J. Mech. A/Solid., 49, 373-381. https://doi.org/10.1016/j.euromechsol.2014.07.016
  2. Aly, T., Elchalakani, M., Thayalan, P. and Patnaikuni, I. (2010), "Incremental collapse threshold for pushout resistance of circular concrete filled steel tubular columns", J. Constr. Steel Res., 66, 11-18. https://doi.org/10.1016/j.jcsr.2009.08.002
  3. Aristizabal-Ochoa, J.D. (2004), "Column stability and minimum lateral bracing: effects of shear deformations", J. Eng. Mech., 130(10), 1223-1232. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:10(1223)
  4. Banerjee, J.R. and Williams, F.W. (1994), "The effect of shear deformation on the critical buckling of columns", J. Sound Vib., 174(5), 607-616. https://doi.org/10.1006/jsvi.1994.1297
  5. Banerjee, J.R. and Williams, FW. (1983), "Vibration characteristics of self-expanding stayed columns for use in space", J. Sound Vib., 90(2), 245-261. https://doi.org/10.1016/0022-460X(83)90532-1
  6. Bonab, A.P., Hashemi, B.H. and Hosseini, M. (2013), "Experimental evaluation of the elastic buckling and compressive capacity of laced columns", J. Constr. Steel Res., 86, 66-73. https://doi.org/10.1016/j.jcsr.2013.03.014
  7. Chen, J.K. and Li, L.Y. (2013), "Elastic axially compressed buckling of battened columns", Int. J. Mech. Sci., 77, 1-7. https://doi.org/10.1016/j.ijmecsci.2013.09.016
  8. Chen, J.K., Kim, B. and Li, L.Y. (2014), "Analytical approach for transverse vibration analysis of castellated beams", Int. J. Struct. Stab. Dyn., 14(3), 1-17. https://doi.org/10.1007/s13296-014-1001-9
  9. Chung, H. and Emms, G. (2008), "Fourier series solutions to the vibration of rectangular lightweight floor/ceiling structures", ACTA Acust. United AC., 94(3), 401-409. https://doi.org/10.3813/AAA.918048
  10. EI-Sawy, K.M., Sweedan, A.M.I. and Martini, M.I. (2009), "Major-axis elastic bucking of axially loaded castellated steel columns", Thin Wall Struct., 47(11), 1295-1304. https://doi.org/10.1016/j.tws.2009.03.012
  11. EI Aghoury, M.A., Salem, A.H., Hanna, M.T. and Amoush, E.A. (2010), "Experimental investigation for the behaviour of battened beam-columns composed of four equal slender angles", Thin Wall. Struct., 48(9), 669-683. https://doi.org/10.1016/j.tws.2010.03.007
  12. Gantes, C.J. and Kalochairetis, K.E. (2012), "Axially and transversely loaded Timoshenko and laced built-up columns with arbitrary supports", J. Constr. Steel Res., 77, 95-106. https://doi.org/10.1016/j.jcsr.2012.05.004
  13. Greschik, G. (2008), "Truss beam with tendon diagonals: mechanics and designs", AIAA J., 46(3), 557-567. https://doi.org/10.2514/1.25249
  14. Hashemi, B.H. and Jafari, M.A. (2009), "Experimental evaluation of elastic critical load in batten colums", J. Constr. Steel Res., 65(1), 125-131. https://doi.org/10.1016/j.jcsr.2008.02.016
  15. Kalochairetis, K.E. and Gantes, C.J. (2011), "Numerical and analytical investigation of collapse loads of laced built-up columns", Comput. Struct., 89(11-12), 1166-1176. https://doi.org/10.1016/j.compstruc.2010.10.018
  16. Kalochairetis, K.E., Gantes, C.J. and Lignos, X.A. (2014), "Experimental and numerical investigation of eccentrically loaded laced built-up steel columns", J. Constr. Steel Res., 101, 66-81. https://doi.org/10.1016/j.jcsr.2014.04.032
  17. Noor, A.K. and Andersen, C.M. (1979), "Analysis of beam-like lattice trusses", Comput. Meth. Appl., 20(1), 53-70. https://doi.org/10.1016/0045-7825(79)90058-6
  18. Noor, A.K. and Nemeth, M.P. (1980), "Analysis of spatial beamlike lattices with rigid joints", Comput. Meth. Appl., 24(1), 35-59. https://doi.org/10.1016/0045-7825(80)90039-0
  19. Renton, J.D. (1991), "Generalized beam theory applied to shear stiffness", Int. J. Solid. Struct., 27(15), 1955-1967. https://doi.org/10.1016/0020-7683(91)90188-L
  20. Rosinger, H.E. and Ritchie, I.G. (1977), "On Timoshenko's correction for shear in vibrating isotropic beams", J. Phys. D. Appl. Phys., 10(11), 1461-1466. https://doi.org/10.1088/0022-3727/10/11/009
  21. Sahoo, D.R. and Rai, D.C. (2007), "Built-up battened columns under lateral cyclic loading", Thin Wall Struct., 45(5), 552-562. https://doi.org/10.1016/j.tws.2007.02.016
  22. Shooshtari, A. and Khajavi, R. (2010), "An efficient procedure to find shape functions and stiffness matrices of nonprismatic Euler-Bernoulli and Timoshenko beam element", Eur. J. Mech. A/Solid., 29(5), 826-836. https://doi.org/10.1016/j.euromechsol.2010.04.003
  23. Wang, C.M., Ng, K.H. and Kitipornchai, S. (2002), "Stability criteria for Timoshenko columns with intermediate and end concentrated axial load", J. Constr. Steel Res., 58, 1177-1193. https://doi.org/10.1016/S0143-974X(01)00071-2
  24. Wu, J.S. and Chang, B.H. (2013), "Free vibration of axial-loaded multi-step Timoshenko beam carrying arbitrary concentrated elements using continuous-mass transfer matrix method", Eur. J. Mech. A-Solid., 38, 20-37. https://doi.org/10.1016/j.euromechsol.2012.08.003