DOI QR코드

DOI QR Code

Plastic energy approach prediction of fatigue crack growth

  • Maachou, Sofiane (Materials and Reactive Systems Laboratory, Mechanical Engineering Department, University of Sidi-Bel-Abbes) ;
  • Boulenouar, Abdelkader (Materials and Reactive Systems Laboratory, Mechanical Engineering Department, University of Sidi-Bel-Abbes) ;
  • Benguediab, Mohamed (Materials and Reactive Systems Laboratory, Mechanical Engineering Department, University of Sidi-Bel-Abbes) ;
  • Mazari, Mohamed (Materials and Reactive Systems Laboratory, Mechanical Engineering Department, University of Sidi-Bel-Abbes) ;
  • Ranganathan, Narayanaswami (School Polytechnic University of Tours)
  • Received : 2015.07.05
  • Accepted : 2016.06.28
  • Published : 2016.09.10

Abstract

The energy-based approach to predict the fatigue crack growth behavior under constant and variable amplitude loading (VAL) of the aluminum alloy 2024 T351 has been investigated and detailed analyses discussed. Firstly, the plastic strain energy was determined per cycle for different block load tests. The relationship between the crack advance and hysteretic energy dissipated per block can be represented by a power law. Then, an analytical model to estimate the lifetime for each spectrum is proposed. The results obtained are compared with the experimentally measured results and the models proposed by Klingbeil's model and Tracey's model. The evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading.

Keywords

References

  1. Balasubramanian, V. and Guha, B. (2000), "Fatigue life prediction of welded cruciform joints using strain energy density factor approach", Theor. Appl. Fract. Mech., 34(1), 85-92. https://doi.org/10.1016/S0167-8442(00)00026-4
  2. Baudendistel, C.M. and Klingbeil, N.W. (2013), "Effect of a graded layer on the plastic dissipation in mixe-dmode fatigue crack growth along plastically mismatched interfaces", Int. J. Fatig., 51, 96-104. https://doi.org/10.1016/j.ijfatigue.2013.01.007
  3. Benguediab, M. (1989), "Etude de la propagation des fissures de fatigue sous spectres de chargement reduits", PhD Dissertation, Universite de Poitiers, France.
  4. Benguediab, M., Bouchouicha, B., Zemri, M. and Mazari, M. (2012), "Crack propagation under constant amplitude loading based on an energetic parameters and fractographic analysis", Mater. Res., 15(4), 544-548. https://doi.org/10.1590/S1516-14392012005000072
  5. Bian, L. and Taheri, F. (2011), "A proposed maximum ratio criterion applied to mixed mode fatigue crack propagation", Mater. Des., 32(4), 2066-2072. https://doi.org/10.1016/j.matdes.2010.11.053
  6. Bodner, S.R., Davidson, D.L. and Lankford, J. (1983), "A description of fatigue crack growth in terms of plastic work", Eng. Fract. Mech., 17(2), 189-191. https://doi.org/10.1016/0013-7944(83)90169-8
  7. Bouchouicha, B., Zemri, M., Zaim, A. and Ould Chikh, B. (2015), "Estimation of the energy of crack propagation in different zones of a welded joint by the local technique", Int. J. Fract., 192(1), 107-116. https://doi.org/10.1007/s10704-015-9989-1
  8. Callaghana, M.D., Humphries, S.R., Law, M., Ho, M., Bendeich, P., Lia, H. and Yeung, W.Y. (2010), "Energy-based approach for the evaluation of low cycle fatigue behaviour of 2.25Cr-1Mo steel at elevated temperature", Mater. Sci. Eng., 527(21-22), 5619-5623. https://doi.org/10.1016/j.msea.2010.05.011
  9. Chang, J., Xu, J.Q. and Mutoh, Y. (2006), "A general mixed-mode brittle fracture criterion for cracked materials", Eng. Fract. Mech., 73(9), 1249-1263. https://doi.org/10.1016/j.engfracmech.2005.12.011
  10. Daily, J.S. and Klingbeil, N.W. (2006), "Plastic dissipation in mixed-mode fatigue crack growth along plastically mismatched interfaces", Int. J. Fatig., 28(12), 1725-1738. https://doi.org/10.1016/j.ijfatigue.2006.01.012
  11. Hachi, B.K., Belkacemi, Y., Rechak, S., Haboussi, M. and Taghite, M. (2010), "Fatigue growth prediction of elliptical cracks in welded joint structure: Hybrid and energy density approach", Theor. Appl. Fract. Mech., 54(1), 11-18. https://doi.org/10.1016/j.tafmec.2010.06.010
  12. Khelil, F., Aour, B., Belhouari, M. and Benseddiq, N. (2013), "Modeling of Fatigue Crack Propagation in Aluminum Alloys Using an Energy Based Approach", Eng. Tech. Appl. Sci. Res., 3(4), 488-496.
  13. Kikukawa, M., Jono, M., Tanaka, K. and Takatani, M. (1976), "Measurement of fatigue crack propagation and crack closure at low stress intensity level by unloading elastic compliance method". J. Soc. Matl. Sci. Japan, 25(276), 899-903. https://doi.org/10.2472/jsms.25.899
  14. Klingbeil, N.W. (2003), "A total dissipated energy theory of fatigue crack growth in ductile solids", Int. J. Fatig., 25(2), 117-128. https://doi.org/10.1016/S0142-1123(02)00073-7
  15. Maurel, V., Remy, L., Dahmen, F. and Haddar, N. (2009), "An engineering model for low cycle fatigue life based on a partition of energy and micro-crack growth", Int. J. Fatig., 31(5), 952-961. https://doi.org/10.1016/j.ijfatigue.2008.09.004
  16. Mazari, M. (2003), "Contribution a l'etude d'une approche energetique de la propagation des fissures de fatigue", PhD Dissertation, Universite de Sidi Bel Abbes, Algerie.
  17. Mazari, M., Bouchouicha, B., Zemri, M., Benguediab, M. and Ranganathan, N. (2008), "Fatigue crack propagation analyses based on plastic energy approach", Comp. Matls. Sci., 41(3), 344-349. https://doi.org/10.1016/j.commatsci.2007.04.016
  18. Moyer, E.T. and Sih, G.C. (1984), "Fatigue analysis of an edge crack specimen: hysteresis strain energy density", Eng. Fract. Mech., 19(2), 643-652. https://doi.org/10.1016/0013-7944(84)90097-3
  19. Newman, J.C. (1974), "Stress analysis of the compact specimen including the effects of pin loading", Proceedings of the National Symposium on Fracture Mechanics, Philadelphia, August.
  20. Noban, T.M., Jahed, H. and Varvani-Farahani, A. (2012), "The choice of cyclic plasticity models in fatigue life assessment of 304 and 1045 steel alloys based on the critical plane-energy fatigue damage approach", Int. J. Fatig., 43, 217-225. https://doi.org/10.1016/j.ijfatigue.2012.03.014
  21. Ranganathan, N. (1997), "Analysis of fatigue crack growth in terms of crack closure and energy", Proceedings of the 2nd Symposium on Advances in Fatigue Crack Closure Measurement and Analysis, San Diego, November.
  22. Ranganathan, N., Chalon, F. and Meo, S. (2008), "Some aspects of the energy based approach to fatigue crack propagation", Int. J. Fatig., 30(10-11), 1921-1929. https://doi.org/10.1016/j.ijfatigue.2008.01.010
  23. Ranganathan, N., Jendoubi, K., Benguediab, M. and Petit, J. (1987), "Effect of R ratio and ${\Delta}K$ level on the hysteretic energy dissipated during fatigue crack propagation", Scripta Metall., 21(8), 1045-1049. https://doi.org/10.1016/0036-9748(87)90247-X
  24. Rice, J.R. (1967), "The mechanics of crack tip deformation and extension by fatigue", Fatigue Crack Growth, Special Technical Publication 415. American Society for Testing and Materials, Philadelphia, 247-311.
  25. Shozo, I., Yoshito, I. and Fine, M.E. (1977), "Plastic work during fatigue crack propagation in a high strength low alloy steel and in 7050 AL-Alloy", Eng. Fract. Mech., 9(1), 123-136. https://doi.org/10.1016/0013-7944(77)90057-1
  26. Sih, G.C. (1974), "Strain energy density factor applied to mixed mode crack problems", Int. J. Fract., 10(3), 305-321. https://doi.org/10.1007/BF00035493
  27. Sih, G.C. and Macdonald, B. (1974), "Fracture mechanics applied to engineering problems-strain energy density fracture criterion", Eng. Fract. Mech., 6(2), 493-507. https://doi.org/10.1016/0013-7944(74)90007-1
  28. Srawley, J.E. and Gross, B. (1972), "Stress intensity factors for bend and compact specimens", Eng. Fract. Mech., 4(3), 587-589. https://doi.org/10.1016/0013-7944(72)90069-0
  29. Tracey, D.M. (1971), "Finite element for determination of crack tip elastic stress intensity factor", Eng. Fract. Mech., 3(3), 255-265. https://doi.org/10.1016/0013-7944(71)90036-1
  30. Weertman, J. (1973), "Theory of fatigue crack growth based on a BCS crack theory with work hardening", Int. J. Fract., 9(2), 125-131. https://doi.org/10.1007/BF00041854

Cited by

  1. Rapid S-N type life estimation for low cycle fatigue of high-strength steels at a low ambient temperature vol.33, pp.6, 2016, https://doi.org/10.12989/scs.2019.33.6.777