DOI QR코드

DOI QR Code

Designing a Crime-Prevention System by Converging Big Data and IoT

  • Received : 2016.04.24
  • Accepted : 2016.06.14
  • Published : 2016.06.30

Abstract

Recently, converging Big Data and IoT(Internet of Things)has become mainstream, and public sector is no exception. In particular, this combinationis applicable to crime prevention in Korea. Crime prevention has evolved from CPTED (Crime Prevention through Environmental Design) to ubiquitous crime prevention;however, such a physical engineering method has the limitation, for instance, unexpected exposureby CCTV installed on the street, and doesn't have the function that automatically alarms passengers who pass through a criminal zone.To overcome that, this paper offers a crime prevention method using Big Data from public organizations along with IoT. We expect this work will help construct an intelligent crime-prevention system to protect the weak in our society.

Keywords

References

  1. Cvijikj, I. P., Kadar, C., Ivan, B. and Te, "Towards a crowd sourcing approach for crime prevention", UBICOMP/ISWC '15, 2015, pp.1367-1372. http://dx.doi.org/10.1145/2800835.2800971
  2. Wilcox, S. P., "AGENTIZING THE SOCIAL SCIENCE OF CRIME", Winter Simulation Conference, 2011.
  3. Prosecutors's office, "Statistics of Sexual Crime during 10years in 2015 in Korea", Prosecutors' office, 2015. http://www.sppo.go.kr
  4. Tibor Bosse, C. G., "An Agent-Based Framework to Support Crime Prevention", International Foundation for Autonomous Agents and Multiagent Systems, 2010. http://www.few.vu.nl/-{tbosse, cg}
  5. Kyung, J-H, "Meaning and Limitation of technical crime prevention", Korean Criminological Review, 2013.
  6. Erete, S. L., "Engaging Around Neighborhood Issues", 2015, pp1590-1601. http://dx.doi.org/10.1145/2675133.2675182
  7. Erete, S. L., Miller, R. and Lewis, D. A., "Differences in technology use to support community crime prevention", The Powers of Co-location, 2014, pp.153-156. http://dx.doi.org/10.1145/2556420.2556499
  8. Erete, S. L., "Empowerment Through Community Crime-Prevention Technologies", FORUM COMMUNITY + CULTURE, 2014. http://dx.doi.org/DOI:10.1145/2517444
  9. Dillahunt, T. R., "Fostering social capital in economically distressed communities", 2014, pp.531-540. http://dx.doi.org/10.1145/2556288.2557123
  10. Erete, S. L., "Protecting the Home, exploring the Roles of Technology and Citizen Activism from a Burglar's Perspective", Changing Perspectives, 2013.
  11. Lewis, S., "Examining and Designing Community Crime Prevention Technology", ACM, 2012.
  12. Erete, S. L., "Crime Prevention Technologies in Low-Income Communities", XRDS, 2012, Vol .19, no.2. http://dx.doi.org/DOI: 10.1145/2382856.2382867
  13. Guo, B., Wang, Z., Yu, Z., Wang, Y., Yen, N. Y., Huang, R. and Zhou, X., "Mobile Crowd Sensing and Computing", Computing Surveys, 2015, pp.1-31. http://dx.doi.org/10.1145/2794400
  14. Andrew Garbett, J. K. W., Ben Kirman, Conor Linehan,Shaun Lawson, "Anti-Social Media: Communicating Risk through Open Data, Crime Maps and Locative Media", Proceedings of HCI KOREA, 2015.
  15. Rexy Arulanandam, B. T. R. S., Maryam A., "Extracting Crime Information from Online Newspaper Articles", The Second Australasian Web Conference, 2014.
  16. Bogomolov, A., Lepri, B., Staiano, J., Oliver, N., Pianesi, F. and Pentland, "A Once Upon a Crime", International DOI Foundation, 2014, pp.427-434. http://dx.doi.org/10.1145/2663204.2663254
  17. John (Jong Uk) Choi, S. A. C., Dong Hwa Kim, Angelos Keromytis, "SecureGov: Secure Data Sharing for Government Services", the 14th Annual International Conference on Digital Government Research, 2013.
  18. Youzhong Ma, X. H., JiaRao, Yu Zhang, Weisong Hu, Yunpeng Chai, Xiaofeng Meng, Chunqiu Liu, "An Efficient Index for Massive IOT Data in Cloud Environment", CIKM'12, 2012.
  19. Toole, J. L., Eagle, N. and Plotkin, J. B., "Spatiotemporal correlations in criminal offense records", ACM Transactions on Intelligent Systems and Technology, 2011, pp.1-18. http://doi.acm.org/10.1145/1989734.1989742
  20. Mohammad A. Tayebi, M. J., Martin Ester, Uwe Glasser, Richard Frank, "Crime Walker: A Recommendation Model for Suspect Investigation", RecSys'11, 2011.
  21. Victor Raskin, J. M. T., Christian F., Hempelmann, "Ontological Semantic Technology for Detecting Insider Threat and Social Engineering", ACM, 2010.
  22. Thomas Heverin, L. Z., "Twitter for City Police Department Information Sharing", The College of Information Science and Technology Drexel University, 2010.
  23. Fatih Ozgul, J. B., Hakan Aksoy, "Mining for offender group detection and story of a police operation", Australian Computer Society, Inc., 2007.
  24. Barros, C. P. and Alves, F. P., "Efficiency in Crime Prevention: A Case Study of the Lisbon Precincts", International Advances in Economic Research, 2005, pp.315-328. http://dx.doi.org/DOI: 10.1007/s11294-005-6660-z
  25. Kasper L. Jensen, H. N. K. I., Sebastian Mukumbira, "Toward an mPolicing Solution for Namibia: Leveraging Emerging Mobile Platforms and Crime Mapping", SAICSIT, 2012.
  26. Yokoyama, T., Akiyama, T., Kashihara, S., Kawamoto, Y. and Gurgen, L., "Considerations towards the construction of smart city test bed based on use case and testbed analysis", 2015, pp.1623-1630. http://dx.doi.org/10.1145/2800835.2801633
  27. Cranshaw, J.,"Whose City of Tomorrow" Is It? On Urban Computing, Utopianism, and Ethics", UrbComp, 2013
  28. Amit Sheth, P. A., "Physical Cyber Social Computing for Human Experience", WIMS, 2013.
  29. Bly the, M. A., Wright, P. C. and Monk, A. F., "Little brother: could and should wearable computing technologies be applied to reducing older people's fear of crime?", Personal and Ubiquitous Computing, 2004, pp.402-415. http://dx.doi.org/DOI 10.1007/s00779-004-0309-4
  30. Daniele Quercia, L. M. A., Rossano Schifanella, "The Digital Life of Walk able Streets", The International World Wide Web Conference Committee, 2015. http://dx.doi.org/10.1145/2736277.2741631.
  31. Ghose, A., Sinha, P., Bhaumik, C., Sinha, A., Agrawal, A. and Dutta Choudhury, "A UbiHeld-Ubiquitous Healthcare Monitoring System for Elderly and Chronic Patients", UbiComp'13, 2013, pp1255-1264. http://dx.doi.org/10.1145/2494091.2497331
  32. Theresa L. Hillenbrand-Gunn, M. J. H., Pamela A. Mauch, and Hyun-joo Park, "Men as Allies: The Efficacy of a High School Rape Prevention Intervention", Journal of Counseling & Development, 2010.
  33. Schneider, R. M., "A Comparison of Information Security Risk Analysis in the Context of e-Government to Criminological Threat Assessment Techniques", InfoSecCD, 2010.
  34. Kiyoshi Murata, Y. O. Japanese,"Risk Society: Trying to Create Complete Security and Safety Using Information and Communication Technology", SIGCAS Computers and Society, 2010, Volume 40, No. 2.
  35. Kitchin, R., "Big data and human geography: Opportunities, challenges and risks", National University of Ireland, 2013. http://dx.doi.org/DOI: 10.1177/2043820613513388
  36. Lazar, N., "The Big Picture: Data, Data, Everywhere ....", CHANCE2013, 2013. http://www.tandfonline.com/loi/ucha20
  37. Kayode Ayankoya, A. C., Jean Greyling, "Intrinsic Relations between Data Science, Big Data, Business Analytics and Datafication", SAICSIT2014, 2014. http://dx.doi.org/10.1145/2664591.2664619
  38. GANG-HOON KIM, S. T., AND JI-HYONG CHUNG, "Big-Data Applications in the Government Sector", COMMUNICATIONS OF THE ACM2014, 2014. http://dx.doi.org/10.1145/2500873
  39. Kim, J.-P., "Busan crime prevention system using the Big Data", Provincial administrative informative study, 2013. http://www.sasang.go.kr
  40. Jee-Eun Kim, M. B., Noboru Koshizuka,Ken Sakamura, "Enhancing Public Transit Accessibility for the Visually Impaired Using IoT and Open Data Infrastructures", Urb-IoT 2014, 2014. http://dx.doi.org/DOI:10.4108/icst.urpb-iot.2014.257263
  41. Ministry of Science, "Utilization manual for big data usage by stages (Version 1.0)", Ministry of Science, 2014.
  42. Dimitropoulos, E. G. S. B. A. X.,"Visualizing big network traffic data using frequent pattern mining and hypergraphs" First IMC Workshop on Internet Visualization, 2014. http://dx.doi.org/DOI 10.1007/s00607-013-0282-8
  43. Mehdi Mirakhorli, H.-M. C., Rick Kazman, "Mining Big Data for Detecting, Extracting and Recommending Architectural Design Concepts", 1st International Workshop on Big Data Software Engineering, 2015. http://dx.doi.org/DOI 10.1109/BIGDSE.2015.11
  44. Wild, F.,"Latent Semantic Analysis",SnowballC, 2015.
  45. Kazunari Sugiyama, K. H., Masatoshi Yoshikawa, Shunsuke Uemura, "Refinement of TF-IDF Schemes for Web Pages using their Hyperlinked Neighboring", HT' 03, 2003.
  46. Claire Fautsch, J. S., "Adapting the tf idf Vector-Space Model to Domain Specific Information Retrieval", SAC'10, 2010.
  47. Alexey Miroshnikov, E. M. C.,"Parallel MCMC combine: An R Package for Bayesian Methods for Big Data and Analytics", PLOS ONE 2014, 2014. http://www.plosone.org
  48. Ayankoya, K., Calitz, A. and Greyling, J. "Intrinsic Relations between Data Science, Big Data, Business Analytics and Datafication", 2014, 192-198. http://dx.doi.org/10.1145/2664591.2664619
  49. http://www.sppo.go.kr
  50. http://www.gartner.com
  51. http://www.eurotech.com
  52. http://www.kics.go.kr
  53. http://www.cppb.go.kr/
  54. https://hadoop.apache.org/
  55. http://wiki.apache.org/nutch/
  56. http://www.saedsayad.com/naive_bayesian.htm
  57. http://www.etsi.org/

Cited by

  1. Enhancing City Sustainability through Smart Technologies: A Framework for Automatic Pre-Emptive Action to Promote Safety and Security Using Lighting and ICT-Based Surveillance vol.12, pp.15, 2016, https://doi.org/10.3390/su12156142
  2. Cognitive Pervasive Service Composition Applied to Predatory Crime Deterrence vol.11, pp.4, 2016, https://doi.org/10.3390/app11041803
  3. Deep Learning Model and Correlation Analysis by User Object Layering of a Social Network Service vol.13, pp.6, 2021, https://doi.org/10.3390/sym13060965