DOI QR코드

DOI QR Code

호모토피 알고리즘을 이용한 Successive Backward Sweep 최적제어 알고리즘 설계 및 궤도전이 문제에의 적용

Successive Backward Sweep Method for Orbit Transfer Augmented with Homotopy Algorithm

  • 투고 : 2015.09.04
  • 심사 : 2016.06.14
  • 발행 : 2016.07.01

초록

호모토피 알고리즘은 비선형성이 강하거나 다수의 최적해가 존재하는 비선형 최적제어 문제에서 점진적으로 비선형 항으로 고려하게 해줌으로써 강건하게 전역의 최적해를 구할 수 있는 방법이다. 본 논문에서는 초기 추정치에 둔감한 SBS 알고리즘과 호모토피 알고리즘을 결합한 비선형 최적제어 알고리즘을 제시하였다. 이러한 접근방식은 저추력 궤적최적화 문제와 같이 비선형성이 강한 문제의 최적해를 구하는데 효과적이다. 또한, 비선형성이 강한 문제들은 종종 다수 국소 해가 존재하게 되는데, 이러한 경우에 SBS-호모토피 방법은 점진적으로 전역해를 찾는 것을 가능하게 한다.

The homotopy algorithm provides a robust method for determining optimal control, in some cases the global minimum solution, as a continuation parameter is varied gradually to regulate the contributions of the nonlinear terms. In this paper, the Successive Backward Sweep (SBS) method, which is insensitive to initial guess, augmented with a homotopy algorithm is suggested. This approach is effective for highly nonlinear problems such as low-thrust trajectory optimization. Often, these highly nonlinear problems have multiple local minima. In this case, the SBS-homotopy method enables one to steadily seek a global minimum.

키워드

참고문헌

  1. J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd Ed., SIAM Philadelphia, 2010.
  2. B. A. Conway, Ed., Spacecraft Trajectory Optimization, Cambridge University Press, NewYork, NY, 2010.
  3. C. Colombo, Optimal trajectory design for interception and deflection of Near Earth Objects, Ph.D Thesis, University of Glasgow, Scotland, 2010.
  4. D. H. Cho, "The Discretized SBS Method with a Waypoint Scheme", Journal of Korea Air Force Academy, Vol 64, No. 2., 2013, pp. 127-140.
  5. D. H. Cho and S. R. Vadali, "A Magnus Series-Based Modified Sweep Method for Optimal Control", The Journal of the Astronautical Sciences, Vol 60, Issue 3, 2013, pp. 331-336.
  6. D. H. Cho and S. R. Vadali, "The Successive Backward Sweep Method for Optimal Control of Nonlinear System with Constraints," Advances in the Astronautical Sciences, Vol 147, 2013, pp 163-183.
  7. A. E. Bryson and Y. C. Ho, Applied Optimal Control: optimization, estimation, and control: Taylor & Francis Group, 1975.
  8. S.K.Rahimian, F.Jalali, J.Seader, and R.E.White, "A new homotopy for seeking all real roots of a nonlinear equation", Computers & Chemical Engineering, vol.35, 2011, pp.403-411 https://doi.org/10.1016/j.compchemeng.2010.04.007
  9. C.M.McCrate, "Higher-order methods for determining optimal controls and their sensitivities", MS Thesis, Texas A&M University, TX, 2010.
  10. J.B.Cailau and J.Noailles, "Sensitivity analysis for time optimal orbit transfer", Optimization, vol.49, 2011, pp.327-350.