DOI QR코드

DOI QR Code

다단 하이브리드 로켓에서 AP 첨가 추진제의 연료과농 연소

Fuel-rich Combustion with AP added Propellant in a Staged Hybrid Rocket Engine

  • Lee, Dongeun (Department of Aerospace Engineering, Konkuk University) ;
  • Lee, Changjin (Department of Aerospace Engineering, Konkuk University)
  • 투고 : 2016.01.13
  • 심사 : 2016.06.24
  • 발행 : 2016.07.01

초록

본 연구는 다단 하이브리드 로켓의 낮은 비추력 성능을 향상시키는 방법으로 AP 첨가 추진제를 제안하고 있다. 추진제에 첨가된 AP 첨가비율 변화에 따라 다단 하이브리드 로켓의 비추력 성능 변화와 연료과농 연소특성 변화를 살펴보았으며, 이때 AP 첨가비율은 하이브리드 로켓의 연소 특징을 유지하기 위해 최대 15 wt%로 제한하였다. 결과에 의하면, AP 15 wt% 추진제는 AP 0 wt% 추진제와 비교하여 비추력 성능이 약 3% 향상되었다. 또한, 동일한 연소온도를 유지함에도 불구하고, AP 첨가비율을 증가시키면 산화제 유입량, O/F비 변화량, 그리고 연소압력은 감소하며 반경반향 온도 분포가 좋아지는 등 다단 하이브리드 로켓의 성능향상에 긍정적인 효과가 나타났다. 그러나 오직 AP를 추진제에 첨가하는 것만으로 다단 하이브리드 로켓의 비추력 성능을 일반 화학로켓의 수준으로 향상시키는 것이 매우 어려운 일임을 고려할 때, 추가적으로 금속입자 첨가를 통해 비추력 성능을 향상시킬 계획이다.

In this study, AP added propellant has been proposed as a method of enhancing the low specific impulse performance found for staged hybrid rocket engine. Experimental tests were carried out to analyze and evaluate the effect of AP added propellant on specific impulse performance as well as fuel-rich combustion characteristics in a staged hybrid rocket engine. Upper limit of AP content in propellant was set to be 15 wt% to maintain the hybrid rocket engine advantages. As a result, 15 wt% AP added propellant showed 3% higher specific impulse performance compared to 0 wt% AP added propellant. Moreover, AP addition proved to offer less injected oxidizer mass flow, less O/F variation, and less combustion pressure while producing fuel-rich gas of the same combustion temperature. Future studies will carry out more combustion tests with metal additives to further enhance specific impulse.

키워드

참고문헌

  1. Lee, D., and Lee, C., "Fuel-rich Combustion in Gas Generator of Staged Hybrid Rocket Engine," 51st AIAA Joint Propulsion Conference, AIAA 2015-3828, 2015.
  2. Lee, D., and Lee, C., "Fuel-Rich Combustion Characteristics of a Combined Gas Generator," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 43, No. 7, pp.593-600, 2015. https://doi.org/10.5139/JKSAS.2015.43.7.593
  3. Shackelford, B., "The Hybrid Propulsion Technology Program Phase 1," NAS8-37777, Vol. 3, 1989.
  4. George, P., Krishnan, S., Varkey, P. M., Ravindran, M., and Ramachandran, L., "Fuel Regression Rate in Hydroxyl Terminated Polybutadiene / Gaseous Oxygen Hybrid Rocket Motors," Journal of Propulsion and Power, Vol. 17, No. 1, 2001.
  5. Frederick Jr., R. A., Whitehead, J. J., Knox, L. R., Moser, M. D., "Regression Rates Study of Mixed Hybrid Propellants," Journal of Propulsion and Power, Vol. 23, No. 1, 2007.
  6. Mascaro, M. D., Jones, D. A., Lineberry, D. M., Frederick Jr., R. A., Moser, M. D., and Mahaffy, K. E., "Internal Ballistics Model for a Mixed Hybrid Rocket Motor," 51st AIAA Joint Propulsion Conference, AIAA 2015-3811, 2015.
  7. Einav, O., Peretz, A., Hashmonay, B., Birnholz, A., and Sobe, Z., "Development of a Lab-Sacle System for Hybrid Rocket Motor Testing," 45th AIAA Joint Propulsion Conference, AIAA 2009-4888, 2010.
  8. Deluca, L. T., Maggi, F., Dossi, S., Weiser, V., Franzin, A., Gettwert, V., and Heintz, T., "High-energy metal fuels for rocket propulsion: characterization and performance," Chinese Journal of Explosives and Propellants, Issue 6, Dec. 2013
  9. Pilon, B., and Louwers, J., "Development of Staged Combustion Aft-Injected Hybrid (SCAIH) Propulsion at Cesaroni Technology Inc," 46th AIAA Joint Propulsion Conference, AIAA 2010-6786, 2010.
  10. Karabeyoglu, A., Toson, E., and Evans, B., "O/F Shift in Hybrid Rockets," 50th AIAA Joint Propulsion Conference, AIAA 2014-3851, 2014.
  11. Zilliac, G., and Karabeyoglu, M. A., "Hybrid Rocket Fuel Regression Rate and Modeling," 42nd AIAA Joint Propulsion Conference, AIAA 2006-4504, 2006.
  12. Karabeyoglu, A., Stevens, J., Geyzel, D., Cantwell, B., Micheletti, D., "High Performance Hybrid Upper Stage Motor," 47th AIAA Joint Propulsion Conference, AIAA 2011-6025, 2011.
  13. Cantwell, B., Karabeyoglu, A., and Altman, D., "Recent Advances In Hybrid Propulsion," International Journal of Energetic Materials and Chemical Propulsion, Vol. 9, No. 4, pp.305-356, 2010 https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.v9.i4.20
  14. Young, G., "Metallic Nano-Particles as Fuel Additives in Air-Breathing Combustion," Ph.D. Dissertation, Aerospace Engineering Dept. Univ. of Maryland, College Park, MD, 2007.
  15. Shin, K. H., Won, J., Tak, H., Choi, S. H., Lee, W., and Lee, C., "A Static Combustion Study on Fuel Rich Propellant for Ducted Rocket Gas Generator," 50th AIAA Joint Propulsion Conference, AIAA 2014-4045, 2014.
  16. Evans, B., Boyer, E., Kuo, K. K., Risha, G., and Chiaverini, M., "Hybrid Rocket Investifations at Penn State University's High Pressure Combustion Laboratory: Overview and Recent Results," 45th AIAA Joint Propulsion Conference, AIAA 2009-5349, 2009.