DOI QR코드

DOI QR Code

Photoluminescence Studies of InP/InGaP Quantum Structures Grown by a Migration Enhanced Molecular Beam Epitaxy

  • Cho, Il-Wook (Department of Physics, Kangwon National University) ;
  • Ryu, Mee-Yi (Department of Physics, Kangwon National University) ;
  • Song, Jin Dong (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology)
  • Received : 2016.06.27
  • Accepted : 2016.07.23
  • Published : 2016.07.30

Abstract

InP/InGaP quantum structures (QSs) grown on GaAs substrates by a migration-enhanced molecular beam epitaxy method were studied as a function of growth temperature (T) using photoluminescence (PL) and emission-wavelength-dependent time-resolved PL (TRPL). The growth T were varied from $440^{\circ}C$ to $520^{\circ}C$ for the formation of InP/InGaP QSs. As growth T increases from $440^{\circ}C$ to $520^{\circ}C$, the PL peak position is blue-shifted, the PL intensity increases except for the sample grown at $520^{\circ}C$, and the PL decay becomes fast at 10 K. Emission-wavelength-dependent TRPL results of all QS samples show that the decay times at 10 K are slightly changed, exhibiting the longest time around at the PL peak, while at high T, the decay times increase rapidly with increasing wavelength, indicating carrier relaxation from smaller QSs to larger QSs via wetting layer/barrier. InP/InGaP QS sample grown at $460^{\circ}C$ shows the strongest PL intensity at 300 K and the longest decay time at 10 K, signifying the optimum growth T of $460^{\circ}C$.

Keywords

References

  1. F. Hatami, W. T. Masselink, and J. S. Harris, Nanotech. 17, 3703 (2006). https://doi.org/10.1088/0957-4484/17/15/014
  2. S. K. Ha, J. D. Song, I. K. Han, D. Y. Ko, S. Y. Kim, and E. H. Lee, J. Korean Phys. Soc. 59, 3089 (2011). https://doi.org/10.3938/jkps.59.3089
  3. J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D Hadass, A Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, J. Phys. D: Appl. Phys. 38, 2088 (2005). https://doi.org/10.1088/0022-3727/38/13/004
  4. A. Ugur, F. Hatami, and W. T. Masselink, J. Cryst. Growth 323, 228 (2011). https://doi.org/10.1016/j.jcrysgro.2011.01.033
  5. R. Rodel, A. Bauer, S. Kremling, S. Reitzenstein, S. Höfling, M. Kamp, L. Worschech, and A. Forchel, Nanotech. 23, 015605 (2012). https://doi.org/10.1088/0957-4484/23/1/015605
  6. P. Podemski, R. Kudrawiec, J. Misiewicz, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel, Appl. Phys. Lett. 89, 151902 (2006). https://doi.org/10.1063/1.2358312
  7. S. Y. Kim, J. D. Song, I. K. Han, and T. W. Kim, J. Nanosci. Nanotech. 12, 5519 (2012). https://doi.org/10.1166/jnn.2012.6325
  8. J. W. Oh, I.-W. Cho, M.-Y. Ryu, and J. D. Song, Appl. Sci. Converg. Tech. 24, 67 (2015). https://doi.org/10.5757/ASCT.2015.24.3.67
  9. N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, Appl. Phys. Lett. 88, 133104 (2006). https://doi.org/10.1063/1.2189195
  10. B. Ilahi, B. Salem, V. Aimez, L. Sfaxi, H. Maaref, and D. Morris, Nanotechnol. 17, 3707 (2006). https://doi.org/10.1088/0957-4484/17/15/015
  11. H. Yang, D-J. Kim, J. Colton, T. Park, D. Meyer, A. Jones, S. Thalman, D. Smith, K. Clark, S. Brown, Appl. Surf. Science, 296, 8 (2014). https://doi.org/10.1016/j.apsusc.2013.12.176
  12. H. Y. Kim, M-Y. Ryu, and J. S. Kim, J. Lumine. 132, 1759 (2012). https://doi.org/10.1016/j.jlumin.2012.01.057
  13. L.Y. Karachinsky, S. Pellegrini, G. S. Buller, A. S. Shkolnik, N. Y. Gordeev, V. P. Evtikhiev, and V. B. Novikov, Appl. Phys. Lett. 84, 7 (2004). https://doi.org/10.1063/1.1637962
  14. H. R. Byun, M.-Y. Ryu, J. D. Song, and C.-L. Lee, J. Korean Phys. Soc. 66, 811 (2015). https://doi.org/10.3938/jkps.66.811