References
- Senneca O. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Process Technol, 88, 87 (2007). http://dx.doi.org/10.1016/j.fuproc.2006.09.002.
- McKee DW. Gasification of graphite in carbon dioxide and water vapor: the catalytic effects of alkali metal salts. Carbon, 20, 59(1982). http://dx.doi.org/10.1016/0008-6223(82)90075-6.
- Hurt RH, Davis KA. Near-extinction and final burnout in coal combustion. Symp (Int) Combust, 25, 561 (1994). http://dx.doi.org/10.1016/s0082-0784(06)80686-7.
- Miccio F, Salatino P, Tina W. Modeling gasification and percolation of ash-bearing porous carbon particles. Proc Combust Inst, 28, 2163 (2000). http://dx.doi.org/10.1016/s0082-0784(00)80625-6.
- Hoffman J, Naude G, de Beer F. 7th World Congress on Industrial Process Tomography, Kracow 780 (2013).
- Condon EU, Odishaw H. Handbook of Physics, Mc Graw Hill, New York (1958).
- Tilley RJD. Principles and Apllications of Chemical Defects, Stanley Thornes Ltd, Chetenham (1998).
- Rowe DM. General Principles and Basic Considerations. In: Rowe DM, ed. Thermoelectrics Handbook: Macro to Nano, Taylor & Francis, Boca Raton, 1-1 (2005).
- Kasap SO. Principles of Electrical Engineering Materials and Devices, McGraw-Hill, New York, 237 (1997).
- Tritt TM. Thermoelectric phenomena, materials, and applications. Annu Rev Mater Res, 41, 433 (2011). http://dx.doi.org/10.1146/annurev-matsci-062910-100453.
- Li JF, Liu WS, Zhao LD, Zhou M. High-performance nanostructured thermoelectric materials. NPG Asia Mater, 2, 152 (2010). http://dx.doi.org/10.1038/asiamat.2010.138.
- Gaultois MW, Sparks TD, Borg CKH, Seshadri R, Bonificio WD, Clarke DR. Data-driven review of thermoelectric materials: performance and resource considerations. Chem Mater, 25, 2911 (2013). http://dx.doi.org/10.1021/cm400893e.
- Xie W, Weidenkaff A, Tang X, Zhang Q, Poon J, Tritt TM. Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials, 2, 379 (2012). http://dx.doi.org/10.3390/nano2040379.
- Cardarelli F. Materials Handbook, Springer Verlag, London (2008).
- Reed RP. Thermal Effects in Industrial Electronic Circuits. In: Irwin JD, ed. The Industrial Electronics Handbook, CRC Pres LLC, Boca Raton, 151 (1997).
- Acosta B, Sevini F. Evaluation of irradiation damage effect by applying electric properties based techniques. Nucl Eng Des, 229, 165 (2004). http://dx.doi.org/10.1016/j.nucengdes.2003.12.009.
- Luo XC, Chugh R, Biller BC, Hoi YM, Chung DDL. Electronic applications of flexible graphite. J Electron Mater, 31, 535 (2002). http://dx.doi.org/10.1007/s11664-002-0111-x.
- Martin J, Tritt T, Uher C. High temperature Seebeck coefficient metrology. J Appl Phys, 108, 121101 (2010). http://dx.doi.org/10.1063/1.3503505.
- Park SM, Han SM, Oh SM. Characterization of artificial graphite electrodes. Carbon Lett, 1, 76 (2000).
- Miccio F, Löffler G, Wargadalam VJ, Winter F. The influence of SO2 level and operating conditions on NOx and N2O emissions during fluidised bed combustion of coals. Fuel, 80, 1555 (2001). http://dx.doi.org/10.1016/s0016-2361(01)00029-1.
- Minutolo P, Commodo M, Santamaria A, De Falco G, D'Anna A. Characterization of flame-generated 2-D carbon nanodisks. Carbon, 68, 138 (2014). http://dx.doi.org/10.1016/j.carbon.2013.10.073.
- Fujita S, Suzuki A. Electromotive Force and Measurement in Several Systems, InTech, 3 (2011).
- Pattanotai T, Watanabe H, Okazaki K. Gasification characteristic of large wood chars with anisotropic structure. Fuel, 117, 331 (2014). http://dx.doi.org/10.1016/j.fuel.2013.09.030.
- Cuesta A, Dhamelincourt P, Laureyns J, Martínez-Alonso A, Tascón JMD. Raman microprobe studies on carbon materials. Carbon, 32, 1523 (1994). http://dx.doi.org/10.1016/0008-6223(94)90148-1.
- Bagheri-Mohagheghi MM, Shahtahmasebi N, Alinejad MR, Youssefi A, Shokooh-Saremi M. Fe-doped SnO2 transparent semiconducting thin films deposited by spray pyrolysis technique: thermoelectric and p-type conductivity properties. Solid State Sci, 11, 233 (2009). http://dx.doi.org/10.1016/j.solidstatesciences.2008.05.005.