DOI QR코드

DOI QR Code

사출성형품질 개선을 위한 실무금형교육에 관한 연구

A Study on Practical Tool Education for Improving Injection Molding Quality

  • 신주경 (오산대학교 기계공학과)
  • Shin, Ju-kyung (Department of Mechanical Engineering, Osan University)
  • 투고 : 2016.11.11
  • 심사 : 2016.11.22
  • 발행 : 2016.12.30

초록

사출 성형 공정에서 외관 품질 문제는 대부분의 성형품에서 발생한다. 금형의 열역학적 설계 중의 하나는 어떠한 위치에서 캐비티 표면 온도가 되도록 균일하게 상승하는 것으로 수행된다. 실험적인 평가를 바탕으로 최적의 사출 성형 조건에서 성형품의 미려한 외관 품질을 위해서 캐비티 벽 온도와 다듬질 가공된 캐비티 표면이 성형품의 외관 문제를 피할 수 있는 가장 중요한 요소이다. 또한 잘못된 게이트 형식과 위치 선택은 성형품의 품질에 상당한 영향이 있어서, 각 캐비티로 부터 올바른 러너 밸런스를 유지하는 것은 매우 중요하다. 실질적으로 생산 현장에서 이행될 수 있는 사출 성형 품질을 위한 최적의 금형 설계와 실무 금형 기술 능력 향상을 위해서 현장 교육을 위한 실무적인 금형기술 과정의 교육훈련 모델을 제시하였다.

In injection molding process, the appearance quality issue occurs in most injection molded article. One of thermal designs for the mold was performed by increasing the cavity wall temperature with being as uniform as possible in any position. On the basis of the practical evaluation, the cavity wall temperature and finishing machined cavity surface under the optimum processing conditions are the most significant factors to avoid the appearance issue on the plastic part for a good cosmetic quality. Also, the wrong choice of gate type and location can have a considerable effect on the quality of a molded part and it's so important to keep the correct runner balance from each cavity. We've proposed the education training model of the practical tool technology course for the field oriented education to improve practical tool technology ability and optimized tooling design for injection molding quality which can be performed at the workplace substantially.

키워드

참고문헌

  1. P. Thienel, Guide to surface defects on thermoplastic injection molded parts, Ludenscheid, NRW: Kunststoff-Institut, 1992.
  2. R. A. Malloy, Plastic part design for injection molding, Munich, Bavaria: Hanser, 1994.
  3. D. Schauf, "Reproducing textures from the cavity surface to the surface of the thermoplastics moulding," Bayer Application Technology Information (584e), 1998.
  4. O. Zollner, "Optimized mould temperature control," Plastic Business Group, Application Technology Information (1104 d,e), 1997.
  5. W. Woebcken, International plastics handbook, Munich, Bavaria: Hanser, 1995.
  6. P. Kennedy, Flow analysis of injection molds, Munich, Bavaria: Hanser, 1995.
  7. B. Holthoff, "Basic principles in thermoplastics engineering," Battenfeld GmbH, Heidelberg, pp. 13-17, 1992.
  8. F. Johannaber, Injection molding machines, Munich, Bavaria: Hanser, 1994.
  9. M. Storck, "The process sequence in injection moulding of thermoplastics," Battenfeld GmbH, Heidelberg, pp. 56-63, 1992.
  10. N. Rao and K. O'Brien, Design data for plastics engineers, Munich, Bavaria: Hanser, 1998.
  11. E. Bociaga, T. Jaruga, K. Lucbczynska, and A. Gnatowski, "Warpage of injection moulded parts as the result of mould temperature difference," Archives of Materials Science and Engineering, vol. 44, no. 1, pp. 28-34, July 2010.
  12. E. Erlenkamper, "Gate design for a high quality surface finish," Plastic Business Group, Application Technology Information (1125 d,e), pp. 8-22, 2000.
  13. J. P. Beaumont, Runner and gating design handbook, Munich, Bavaria: Hanser, 2004.
  14. J. P. Beaumont, J. H. Young, and M. J. Jaworski, "Mold filling imbalances in geometrically balanced runner system," Journal of Reinforced Plastics and Composites, vol. 18, no. 6, pp. 572-590, April 1999. https://doi.org/10.1177/073168449901800609
  15. E. Bociaga and T. Jaruga, "Visualization of melt flow lines in injection moulding," Journal of Achievements in Materials and Manufacturing Engineering, vol. 18, pp. 331-334, 2006.