해양환경 변동에 따른 수중음향 무선통신 채널 특성

  • 발행 : 2016.07.29

초록

해양에서 음파를 사용하여 수중통신을 시도할 경우 해양매질은 음향 도파관(acoustic waveguide)의 역할을 하게 되고, 이 경우 해양환경의 변동성과 그에 따른 음파와 매질의 간섭에 의해 수중통신 채널의 변동성이 발생한다. 수중음향 채널은 대역 제한 채널이면서 잔향음 제한 채널이고 강한 도플러 변이 채널이므로 수신된 통신 신호는 육상통신에 비해 심한 인접 심볼간 간섭(intersymbol interference)과 위상변이를 가지게 된다. 따라서 수중통신을 시도함에 있어 이러한 해양환경 변동성과 그에 따른 수중음향 채널 변동에 대한 충분한 고려가 필요하다. 본 논문은 수중통신 시스템 구성에 도움을 줄 수 있도록 수중통신 채널에 영향을 미치는 해양 매질의 기본적 특성에 대해 소개하고 수중통신 채널과의 상관성 및 환경 변동성에 따른 통신채널의 변동성에 대해 소개하고자 한다.

키워드

참고문헌

  1. T. C. Yang, "Properties of underwater acoustic communication channels in shallow water," J. Acoust. Soc. Am., vol. 131, pp. 129-145, 2011.
  2. D. Rouseff, M. Badiey, and A. Song, "Effect of reflected and refracted signals on coherent underwater acoustic communication: Results from the Kauai experiment(KauaiEx 2003)," J. Acoust. Soc. Am., vol. 126, pp. 2359-2366, 2011.
  3. M. Stojanovic, "Underwater acoustic communications: Design considerations on the physical layer," in Proc. IEEE/IFIP 5th Annu. Conf. Wireless Demand Netw. Syst. Services, 2008.
  4. D. B. Kilofoyle and A. B. Baggeroer, "The state of the art in underwater acoustic telemetry," IEEE J. Oceanic Eng., vol. 25, pp. 4-27, 2000. https://doi.org/10.1109/48.820733
  5. M. Stojanovic, J. A. Catipovic, and J. G. Proakis, "Phase-coherent digital communications for underwater acoustic channels," IEEE J. Oceanic Eng., vol. 19, pp. 100-111, 1994. https://doi.org/10.1109/48.289455
  6. T. C. Yang, "Differences between passive-phase conjugation and decision-feedback equalizer for underwater acoustic communications," IEEE J. Oceanic Eng., vol. 29, pp. 472-487, 2004. https://doi.org/10.1109/JOE.2004.827122
  7. H. S. Hung, S. H. Chang, S. L. Chen, and C. W. Chang, "Real time implementation of frost beamformer for underwater communications,"Journal of Marine Science and Technology, vol. 7, pp. 1-7, 1999.
  8. H. C. Song, W. S. Hodgkiss, W. A. Kuperman, T. Akal, and M. Stevenson, "High-rate synthetic aperture communications in shallow water," J. Acoust. Soc. Am., Vol. 126, pp. 3057-3061, 2009. https://doi.org/10.1121/1.3257184
  9. D. Rouseff, D. R. Jackson, W. L. J. Fox, C. D. Jones, J. A. Ritcey, and D. R. Dowling, "Underwater acoustic communication by passive-phase conjugation: Theory and experimental results," IEEE J. Oceanic Eng., vol. 26, pp. 821-831, 2001. https://doi.org/10.1109/48.972122
  10. T. C. Yang, "Temporal resolutions of time-reversal and passive-phase conjugation for underwater acoustic communications," IEEE J. Oceanic Eng., vol. 28, pp. 229-245, 2003. https://doi.org/10.1109/JOE.2003.811895
  11. A . Song, "Passive time reversal acoustic communications through shallow-water internal waves," IEEE J Oceanic Eng., vol. 35, pp. 756-765, 2010. https://doi.org/10.1109/JOE.2010.2060530
  12. H. C. Song, W. S. Hodgkiss, W. A. Kuperman, W. J. Higley, K. Raghukumar, T. Akal, and M. Stevenson, "Spatial diversity in passive time reversal communications," J. Acoust. Soc. Am., vol. 120, pp. 2067-2076, 2006. https://doi.org/10.1121/1.2338286
  13. W. H. Thorp, "Deep-ocean sound attenuation in the sub and low kilo cycle per second region," J. Acoust. Soc. Am., vol. 38, pp. 648-654, 1965. https://doi.org/10.1121/1.1909768
  14. H. Medwin, and C. S. Clay, Fundamentals of acoustical oceanography, ACADEMIC PRESS, pp. 4, 1998.
  15. G. M. Wenz, "Acoustic ambient noise in the ocean: Spectra and sources," J. Acoust. Soc. Am., vol. 34, pp. 1936-1956, 1962. https://doi.org/10.1121/1.1909155
  16. 최복경, 김봉채, 김철수, 김병남, "한반도주변해역수중배 경소음의풍속과선박분포에따른의존성분석," 한국음향학회지, vol. 22, pp. 233-241, 2003.
  17. M. Stojanovic, "On the relationship between capacity and distance in an underwater acoustic communication channel," ACM SIGMOBILE Mobile Comp. Commun., vol. 11, pp. 34-43, 2007. https://doi.org/10.1145/1347364.1347373
  18. M. Stojanovic and J. Preisig, "Underwater acoustic communication channels: Propagation models and statistical characterization," IEEE Commun. Mag., pp. 84-89, 2009.
  19. J. W. Choi and P. H. Dahl, "Measurement and simulation of the channel intensity impulse response for a site in the East China Sea," J. Acoust. Soc. Am., vol. 119, pp. 2677-2685, 2006. https://doi.org/10.1121/1.2189449
  20. J. W. Choi and P. H. Dahl, "Mid to high frequency bottom loss in the East China Sea," IEEE J Oceanic Eng., vol. 29, pp. 980-987, 2004. https://doi.org/10.1109/JOE.2004.834178
  21. J. C. Preisig, "Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment," J.Acoust. Soc. Am., vol. 118, pp. 263-278, 2005. https://doi.org/10.1121/1.1907106
  22. T. C. Yang, "Measurements of temporal coherence of sound transmissions through shallow water," J. Acoust. Soc. Am., vol. 120, pp. 2595-2614, 2006. https://doi.org/10.1121/1.2345910
  23. N. C. Makris, "The effect of saturated transmission scintillation on ocean acoustic intensity measurements," J. Acoust. Soc. Am., vol. 100, pp. 769-783, 1996. https://doi.org/10.1121/1.416239
  24. H. La and J. W. Choi, "8-kHz bottom backscattering measurements at low grazing angles in shallow water," J. Acoust. Soc. Am., vol. 127, pp. 160-165, 2010. https://doi.org/10.1121/1.3338987
  25. S. H. Nam, D. J. Kim, H. R. Kim, and Y. G. Kim, "Typhoon-induced, highly nonlinear internal solitary waves off the east coast of Korea," Geophys Res Lett., Vol. 34, pp. L01607, 2007.
  26. D. Rouseff, D. Tang, K. L. Williams, and Z. W, "Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic observations," J. Acoust. Soc. Am., vol. 124, pp. 73-77, 2008. https://doi.org/10.1121/1.2963097
  27. 수중통신/탐지특화연구센터2단계중간보고서, 국방과학연구소, 2011.
  28. M. B. Porter and H. P. Bucker, "Gaussian beam tracing for computing ocean acoustic fields," J. Acoust. Soc. Am., vol. 82, pp. 1349-1359, 1987. https://doi.org/10.1121/1.395269
  29. S. Son, H. Kim, J. Joo, and J. W. Choi, "Multipath effects on high-frequency coherent acoustic communications in shallow water," Jpn. J. Appl. Phys., vol. 52, pp. 07HG03, 2013. https://doi.org/10.7567/JJAP.52.07HG03
  30. P. H. Dahl and J. W. Choi, "The East China Sea as an underwater acoustic communication channel: Measurements of the channel impulse response (U)," U.S. Navy J. of Underwater Acoustics, Vol. 56(1), pp.141-154, 2006. (Classified)
  31. A. Song, M. Badiey, H. C. Song, W. S. Hodgkiss, M. B. Porter, and KauaiEx Group, "Impact of ocean variability on coherent underwater acoustic communications during the Kauai experiment (KauaiEx)," J. Acoust. Soc. Am., vol. 123, pp. 856-865, 2007.
  32. A. Song, M. Badiey, H. C. Song, W. S. Hodgkiss, M. B. Porter, and KauaiEx Group, "Environmental effects on phase coherent underwater acoustic communications: A perspective from several experimental measurements," AIP Conf. Proc., vol. 728, pp. 90, 2004.
  33. T. C. Yang, "Temporal resolution of time-reversal and passive-phase conjugation for underwater acoustic communications," IEEE J Oceanic Eng., vol. 28, pp. 229-245, 2003. https://doi.org/10.1109/JOE.2003.811895
  34. H. C. Song, "An overview of shallow-water acoustic variability experiment 2015(SAVEX15)," Proceedings of the SAVEX15 Workshop, 2016.
  35. T. Akal, C. Ferla, and D. R. Jackson, "Phase conjugation in the ocean : Experimental demonstration of an acoustic time-reversal mirror," J. Acoust. Soc. Am., vol. 103, pp. 25-40, 1998. https://doi.org/10.1121/1.423233
  36. H. Song, W. A. Kuperman, W. S. Hodgkiss, T. Akal, and P. Guerrini, "Demonstration of a high-frequency acoustic barrier with a time-reversal mirror," IEEE J Oceanic Eng., vol. 28, pp. 246-249, 2003. https://doi.org/10.1109/JOE.2003.811900