재활로봇의 기술 동향

  • 발행 : 2016.07.29

초록

재활로봇은 최근 기술적 성장과 임상 수요를 통해 시장을 만들어 가고 있다. 재활로봇은 1990년대 일상생활보조를 바탕으로 연구개발 및 제품화가 진행되었다. 2000년대에 들어서면서 치료현장에서 재활로봇이 적용되기 시작하였다. 척수손상과 같은 마비환자의 보행재활을 시작으로 대상군의 규모가 더 큰 뇌졸중에 재활로봇이 활용되고 있다. 재활로봇은 많은 횟수의 훈련이 가능할 뿐만 아니라 치료 수준을 균일하게 할 수 있다. 최근 기술적 이슈인 (1) 경량화, (2) 재료의 변화, (3) 의도파악, (4) 인간-로봇 상호작용 관점의 피드백에 대해 살펴본다. 추가적 최근 시장에서의 경쟁이 심화하는 하지 외골격 로봇에 대해 현황을 살펴본다. 재활로봇 분야는 절대 강자가 없는 다양성이 강한 시장이다. 재활로봇의 임상진입을 위한 중개연구, 시장 보급을 위한 시범보급이 추진을 바탕으로 진행되고 있다.

키워드

참고문헌

  1. "Concept paper WHO Guidelines on Health-Related Rehabilitation (Rehabilitation Guidelines)," World Health Organization. http://who.int/disabilities/care/rehabilitation_guidelines_concept.pdf
  2. Won-Kyung Song, "Trends in rehabilitation robots and their translational research in National Rehabilitation Center, Korea," Biomedical Engineering Letters 6.1. pp 1-9, 2016. https://doi.org/10.1007/s13534-016-0211-9
  3. "Rehabilitation Robots, Active Prostheses, and Exoskeletons: Market Shares, Strategies, and Forecasts, Worldwide, 2014 to 2020", Wintergreen Research, 2014.
  4. Song, Won-Kyung, et al. "Reaching contralateral target by chronic hemiparetic stroke survivors using active-assisted/active exercise with 2D/3D visual feedback." 2015 IEEE International Conference on Rehabilitation Robotics (ICORR). IEEE, 2015.
  5. Robotic arm PROFICIO, http://www.robotnik.eu/robotics-arms/proficio/
  6. http://inhabitat.com/argo-unveils-an-improved-rewalk-suit-that-helps-paraplegics-walk-again/
  7. http://exoskeletonreport.com/2015/08/ekso-bionics-company-profile/
  8. http://cdn.phys.org/newman/gfx/news/hires/2016/fdaapprovesi.jpg
  9. http://www.fastcoexist.com/3056096/the-paralyzed-can-walk-again-with-this-super-light-robotic-exoskeleton
  10. Won-Kyung Song, Won-Jin Song, and Ji-Young Jung. "NREX: NRC Robotic Exoskeleton." Ubiquitous Robots and Ambient Intelligence (URAI), 2013 10th International Conference on. IEEE, 2013.
  11. Jun-Yong Song, and Won-Kyung Song. "Development of Robotic Hand Module of NRC Exoskeleton Robot (NREX)." The Journal of Korea Robotics Society 10.3 (2015): 162-170. https://doi.org/10.7746/jkros.2015.10.3.162
  12. Cho, Ki Hun, and Won-Kyung Song. "Robot-Assisted Reach Training for Improving Upper Extremity Function of Chronic Stroke." The Tohoku journal of experimental medicine 237.2 (2015): 149-155. https://doi.org/10.1620/tjem.237.149
  13. Brian Byunghyun Kang, et al. "Development of a polymer-based tendon-driven wearable robotic hand." 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016.
  14. 김승종,이종민, 환자의 의도 파악과 로봇 재활: 보행재활을 중심으로, 한국로봇학회 학회지, 제13권 2호, pp.32-37, 2016.
  15. Gerdienke B. Prange, Michiel J. Jannink, Catharina G. M. Croothuis-Oudshoorn, Hermie J. Hermens, and Maarten J. IJzerman, "Systematic Review of the Effect of Robot-Aided Therapy on Recovery of the Hemiparetic Arm after Stroke," Journal of Rehabilitation Research and Development, Vol. 43, No. 2, pp. 171-184, March/April 2006. https://doi.org/10.1682/JRRD.2005.04.0076
  16. Hermano Igo Krebs, Bruce Volpe, and Neville Hogan, "A Working Model of Stroke Recovery from Rehabilitation Robotics Practitioners," Journal of NeuroEngineering and Rehabilitation, Vol. 6, Article 6, February 2009.
  17. Andrew Pennycott, Dario Wyss, Heike Vallery, Verena Klamroth-Marganska, and Robert Riener, "Towards More Effective Robotic Gait Training for Stroke Rehabilitation: a Review," Journal of NeuroEngineering and Rehabilitation, Vol. 9, Article 65, September 2012.
  18. Juan-Manuel Belda-Lois, et al., "Rehabilitation of Gait after Stroke: a Review Towards a Top-down Approach," Journal of NeuroEngineering and Rehabilitation, Vol. 8, Article 66, December 2011.
  19. http://www.gtec.at/Research/Projects/BETTER
  20. Future BNCI, A Roadmap for Future Directions in Brain / Neuronal Computer Interaction, 2012. http://bnci-horizon-2020.eu/images/bncih2020/FBNCI_Roadmap.pdf
  21. 송원경, 신준호, 조기훈, 송준용, 정지영, 정순준, 홍미란, 보행 및 상지 재활환경 중심의 인터렉티브 재활로봇에 대한 연구, 국립재활원 재활로봇중개연구 심포지엄, 2015.
  22. Byung-Woo Ko, Hwi-Young Lee, and Won-Kyung Song. "Rhythmic auditory stimulation using a portable smart device: short-term effects on gait in chronic hemiplegic stroke patients." Journal of Physical Therapy Science 28.5 (2016): 1538-1543. https://doi.org/10.1589/jpts.28.1538
  23. 송원경, 재활로봇 동향과 재활로봇중개연구, 한국로봇학회 학회지, 제13권 2호, pp. 3-9, 2016.
  24. Ability, http://ability-switzerland.com/
  25. FDA News Release, FDA allows marketing of first wearable, motorized device that helps people with certain spinal cord injuries to walk, http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm402970.htm
  26. FDA approves powered robotic exoskeleton for clinical and personal use, http://www.extremetech.com/extreme/224615-fda-approves-poweredrobotic-exoskeleton-for-clinical-and-personal-use
  27. Ekso Bionics: Now the First and Only FDA-Approved Exoskeleton, http://moneymorning.com/2016/04/08/ekso-bionics-now-the-first-and-only-fdaapproved-exoskeleton/
  28. Standardisation Newsletter, Standardisation Efforts on Industrial and Service Robots, https://eu-robotics.net/cms/upload/downloads/ISOStandardisation-Newsletter_2016-04.pdf
  29. Chapal Khasnabis, Zafar Mirza, and Malcolm MacLachlan. Opening the GATE to inclusion for people with disabilities. The Lancet 386.10010, 2015, 2229-2230. https://doi.org/10.1016/S0140-6736(15)01093-4
  30. Priority Assistive Products List (APL), http://www.who.int/phi/implementation/assistive_technology/low_res_english.pdfs
  31. 범재원,남형석,김성완, 재활로봇치료의 적용 및 효과 근거, 한국로봇학회 학회지, 제13권 2호, pp.26-31, 2016.