Structural Stability and Design of Shallow Spatial Truss Dome

얕은 공간트러스 돔의 구조안정성과 설계

  • Shon, Su-Deok (School of Design & Arch. Eng., Korea Univ. of Tech. & Education) ;
  • Choi, Seo-Woen (School of Design & Arch. Eng., Korea Univ. of Tech. & Education) ;
  • Ha, Hyun-Ju (School of Design & Arch. Eng., Korea Univ. of Tech. & Education) ;
  • Lee, Don-Woo (School of Design & Arch. Eng., Korea Univ. of Tech. & Education) ;
  • Kwak, Eui-Shin (School of Design & Arch. Eng., Korea Univ. of Tech. & Education)
  • 손수덕 (한국기술교육대학교 건축공학부) ;
  • 최서원 (한국기술교육대학교 건축공학부) ;
  • 하현주 (한국기술교육대학교 건축공학부) ;
  • 이돈우 (한국기술교육대학교 건축공학부) ;
  • 곽의신 (한국기술교육대학교 건축공학부)
  • Published : 2016.06.15

Abstract

Keywords

References

  1. Ario, I., Homoclinic bifurcation and chaos attractor in elastic two-bar truss. International Journal of Non-Linear Mechanics, 2004, 39(4), 605-617. https://doi.org/10.1016/S0020-7462(03)00002-7
  2. Barrio, R., Blesa, F., & Lara, M., VSVO formulation of the Taylor method for the numerical solution of ODEs. Computers & mathematics with Applications, 2005, 50, 93-111. https://doi.org/10.1016/j.camwa.2005.02.010
  3. Bi, Q., & Dai, H., Analysis of non-linear dynamics and bifurcations of a shallow arch subjected to periodic excitation with internal resonance, Journal of Sound and Vibration, 2000, 233(4), 557-571.
  4. Blair, K., Krousgrill, C., & Farris, T., Non-linear dynamic response of shallow arches to harmonic forcing. Journal of Sound and Vibration, 1996, 194(3), 353-367. https://doi.org/10.1006/jsvi.1996.0363
  5. Budiansky, B., & Roth, R., Axisymmetric dynamic buckling of clamped shallow spherical shells; Collected papers on instability of shells structures. NASA TN D-1510, Washington DC, 1962, 597-606.
  6. Bulenda, Th. and Knippers, J., Stability of grid shells, Computers and Structures, 2001, 79, 1161-1174. https://doi.org/10.1016/S0045-7949(01)00011-6
  7. Chen, J. and Lin, J., Stability of a shallow arch with one end moving at constant speed. International Journal of Non-Linear Mechanics, 2006, 41(5), 706-715. https://doi.org/10.1016/j.ijnonlinmec.2006.04.004
  8. Chen, J., Ro, W. and Lin, J., Exact static and dynamic critical loads of a sinusoidal arch under a point force at the midpoint. International Journal of Non-Linear Mechanics, 2009, 44(1), 66-70. https://doi.org/10.1016/j.ijnonlinmec.2008.08.006
  9. Choong, K.K. and Hangai, Y., Review on methods of bifurcation analysis for geometrically nonlinear structures, Bulletin of the IASS, 1993, 34(112), 133-149.
  10. Eftekhari, S.A., Differential quadrature procedure for in-plane vibration analysis of variable thickness circular arches traversed by a moving point load, Applied Mathematical Modelling, 2016, In Press, doi:10.1016/j.apm.2015.11.046
  11. Gutman, S., Ha, J. and Lee, S., Parameter identification for weakly damped shallow arches. Journal of Mathematical Analysis and Applications, 2013, 403(1), 297-313. https://doi.org/10.1016/j.jmaa.2013.02.047
  12. Ha, J.H., Gutman, S., Shon, S.D. and Lee, S.J., Stability of shallow arches under constant load. International Journal of Non-linear Mechanics, 2014, 58, 120-127. https://doi.org/10.1016/j.ijnonlinmec.2013.08.004
  13. He, J., Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 1999, 178, 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
  14. Kim, S., Kang, M., Kwun, T., & Hangai, Y., Dynamic instability of shell-like shallow trusses considering damping. Computers and Structures, 1997, 64, 481-489. https://doi.org/10.1016/S0045-7949(96)00141-1
  15. Lacarbonara, W., & Rega, G., Resonant nonlinear normal modes-part2: activation/ orthogonality conditions for shallow structural systems. International Journal of Non-linear Mechanics, 2003, 38, 873-887. https://doi.org/10.1016/S0020-7462(02)00034-3
  16. Lin, J., & Chen, J., Dynamic snap-through of a laterally loaded arch under prescribed end motion. International Journal of Solids and Structures, 2003, 40, 4769-4787. https://doi.org/10.1016/S0020-7683(03)00181-1
  17. Lopez, A., Puente, I. and Serna, M.A., Numerical model and experimental tests on single-layer latticed domes with semi-rigid joints. Computers and Structures, 2007, 85, 360-374. https://doi.org/10.1016/j.compstruc.2006.11.025
  18. Shon, S., Kim, S., Lee, S. and Kim, J., A study on the critical point and bifurcation according to load mode of dome-typed space frame structures. Journal of the Korean Association for Spatial Structures, 2011, 11(1), 121-130. https://doi.org/10.9712/KASS.2011.11.1.121
  19. Shon, S., Ha, J., & Lee, S., Nonlinear dynamic analysis of space truss by using multistage homotopy perturbation method. Journal of Korean Society for Noise and Vibration Engineering, 2012, 22(9), 879-888. https://doi.org/10.5050/KSNVE.2012.22.9.879
  20. Shon, S. and Lee, S., Critical load and effective buckling length factor of dome-typed space frame accordance with variation of member rigidity. Journal of the Korean Association for Spatial Structures, 2013, 13(1), 87-96. https://doi.org/10.9712/KASS.2013.13.1.087
  21. Shon, S., Lee, S., Ha, J., & Cho, G., Semi-analytic solution and stability of a space truss using a multi-step Taylor series method. Materials, 2015, 8(5), 2400-2414. https://doi.org/10.3390/ma8052400
  22. Shon, S., Lee, S., & Lee, K., Characteristics of bifurcation and buckling load of space truss in consideration of initial imperfection and load mode. Journal of Zhejiang University-SCIENCE A, 2013, 14(3), 206-218. https://doi.org/10.1631/jzus.A1200114
  23. Shon, S., Lee, S., Lee, D. & Kim, S., Unstable behaviour and critical buckling load of framed large spatial structures in accordance with the bariation of joint rigidity. Journal of the Korean Association for Spatial Structures, 2014, 14(3), 47-56. https://doi.org/10.9712/KASS.2014.14.3.047
  24. Hwang, K., Lee, S. and Shon, S., Buckling load of single-layered lattice roof structure considering asymmetric snow load. Journal of the Korean Association for Spatial Structures, 2015, 15(3), 43-49. https://doi.org/10.9712/KASS.2015.15.3.043