Acknowledgement
Supported by : 한국연구재단
References
- Akashi O., Hanaoka T., Matsuoka, Y., & Kainuma, M. (2011). A projection for global CO2 emissions from the industrial sector through 2030 based on activity level and technology changes. Energy, 36(4), 1855-1867. https://doi.org/10.1016/j.energy.2010.08.016
- Aprianti, E., Shafigh, P., Bahri, S., & Farahani, J. (2015). Supplementary cementitious materials origin from agricultural wastes-A review. Construction and Building Materials, 74(15), 176-187. https://doi.org/10.1016/j.conbuildmat.2014.10.010
- Awal, A., & Hussin, W. (2011). Effect of Palm Oil Fuel Ash in Controlling Heat of Hydration of Concrete. Procedia Engineering, 14, 2650-2657. https://doi.org/10.1016/j.proeng.2011.07.333
- Chindaprasirt, P., Jaturapitakkul, C., & Sinsiri, T. (2007). Effect of fly ash fineness on microstructure of blended cement paste. Construction and Building Materials, 21(7), 1534-1541. https://doi.org/10.1016/j.conbuildmat.2005.12.024
- Jaturapitakkul, C., Tangpagasit, J., Songmue, S., & Kiattikomol, K. (2011). Filler effect and pozzolanic reaction of ground palm, oil fuel ash. Construction and Building Materials, 25(11), 4287-4293. https://doi.org/10.1016/j.conbuildmat.2011.04.073
- Jaturapitakkul, C., Kiattikomol, K., Tangchirapat, W., & Saeting, T. (2007). Evaluation of the sulfate resistance of concrete containing palm oil fuel ash. Construction and Building Materials, 21(7), 1399-1405. https://doi.org/10.1016/j.conbuildmat.2006.07.005
- Lee, C., Song, H., Ann, K., & Ismail, M. (2009). Material characteristic of POFA Concrete and Its Application to Corrosion Resistance Evaluation. Journal of the Korea Concrete Institute, 21(5), 565-572. https://doi.org/10.4334/JKCI.2009.21.5.565
- Lee, S. (2003). Pozzolan Reaction. Cement, 158, 40-44.
- Metz, B., Davidson, O., Bosch, P., Dave, R., & Mayer, L. (2007). Climate change 2007. Contribution of working Group 111 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA, University Press.
- Madurwar, M., Ralegaonkar, R. & Mandavgane, S. (2013). Application of agro-waste for sustainable construction materials: A review. Construction and Building Materials, 38, 872-878. https://doi.org/10.1016/j.conbuildmat.2012.09.011
- Mehta. P. K. (1973). Concrete, Structure, properties and materials. Prentice Hall, Vol. 1, p25.
- Mendoza, O., Giraldo, C., Camargo, S., & Tobon, J. (2015) Structural and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from alite hydration in the presence of sodium and potassium hydroxide. Cement and Concrete Research, 74, 88-94. https://doi.org/10.1016/j.cemconres.2015.04.006
- Noorvand, H., Ali, A., Demirboga, R., Noorvand, H., & Farzadnia, N. (2013). Physical and chemical characteristics of unground palm oil fuel ash cement mortars with nanosilica. Construction and Building Materials, 48, 1104-1113. https://doi.org/10.1016/j.conbuildmat.2013.07.070
- Ranjbar, N., Behnia, A., Alsubari, B., Birgani, P., & Jumaat, M. (2015). Durability and mechanical properties of self-compacting concrete incorporating palm oil fuel ash. Journal of Cleaner Production, 112(1), 1-8. https://doi.org/10.1016/j.jclepro.2015.06.081
- Rajak, M., Majid, Z., & Ismail, M. (2015). Morphological characteristics of hardened cement pastes incorporating nano-palm oil fuel ash. Procedia Manufacturing, 2, 512-518. https://doi.org/10.1016/j.promfg.2015.07.088
- Sata, V., Jaturapitakkul, C., & Kiattikomol, K. (2007). Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete. Construction and Building Materials, 21(7), 1589-1598. https://doi.org/10.1016/j.conbuildmat.2005.09.011
- Sinsiri, T., Kroehong, W., Jaturapitakkul, C., & Chindaprasirt, P. (2012). Assessing the effect of biomass ashes with different finenesses on the compressive strength of blended cement paste. Materials and Design, 42, 424-433. https://doi.org/10.1016/j.matdes.2012.06.030
- Tangchirapat, W., Saeting, T., Jaturapitakkul, C., Kiattikomol, K., & Siripanichgorn, A. (2007). Use of waste ash from palm oil industry in concrete. Waste Management, 27, 81-88. https://doi.org/10.1016/j.wasman.2005.12.014
- Tangchirapat, W., & Jaturapitakkul, C. (2010). Strength, drying shrinkage, and water permeability of concrete incorporating ground palm oil fuel ash. Cement & Concrete Composites, 32, 767-774. https://doi.org/10.1016/j.cemconcomp.2010.08.008
- Tangchirapat, W., Jaturapitakkul, C., & Chindaprasirt, P. (2009). Use of palm oil fuel ash as a supplementary cementitious material for producing high strength concrete. Construction and Building Materials, 23(7), 2641-2646. https://doi.org/10.1016/j.conbuildmat.2009.01.008
- Tay, J., & Show, K. (1995) Use of ash derived from oil-palm waste incineration as a cement replacement material. Resources, Conservation and Recycling Journal, 13(1), 27-36. https://doi.org/10.1016/0921-3449(94)00012-T
Cited by
- Microstructural and Strength Characteristics of High-Strength Mortar Using Nontraditional Supplementary Cementitious Materials vol.31, pp.4, 2019, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002626