DOI QR코드

DOI QR Code

GLOVE: 대용량 과학 데이터를 위한 분산공유메모리 기반 병렬 가시화 도구

GLOVE: Distributed Shared Memory Based Parallel Visualization Tool for Massive Scientific Dataset

  • 이중연 (한국과학기술정보연구원 가시화기술개발실) ;
  • 김민아 (한국과학기술정보연구원 가시화기술개발실) ;
  • 이세훈 (한국과학기술정보연구원 가시화기술개발실) ;
  • 허영주 (한국과학기술정보연구원 가시화기술개발실)
  • 투고 : 2016.05.03
  • 심사 : 2016.05.17
  • 발행 : 2016.06.30

초록

가시화 도구는 데이터 입출력, 시각적 변환, 상호작용적인 렌더링의 세 구성요소로 구분할 수 있다. 본 논문에서는 거대용량의 과학 데이터를 실시간으로 가시화하기 위해 가시화 도구의 세 구성요소에 대한 요구사항을 분석, 정의하고 이를 만족시키기 위한 방안을 제시하고자 한다. 특히, 효율적인 가시화 도구의 개발을 위해 공개 소프트웨어 도구를 최대한 활용하고자 하였으며, 서로 다른 용도로 개발된 각 공개 소프트웨어 도구를 통합하여 하나의 가시화 도구로 개발하는 방안과 시공간적인 과학 데이터의 실시간 가시화를 위한 최적화 방법에 대해 논한다. 이를 통해 분산공유메모리 기반의 과학 데이터 병렬 가시화 도구인 GLOVE를 제안하였으며, 유동해석 분야 과학 데이터를 이용한 실험을 통해 GLOVE와 다른 데이터 가시화 소프트웨어와의 성능을 비교 분석했다.

Visualization tool can be divided by three components - data I/O, visual transformation and interactive rendering. In this paper, we present requirements of three major components on visualization tools for massive scientific dataset and propose strategies to develop the tool which satisfies those requirements. In particular, we present how to utilize open source softwares to efficiently realize our goal. Furthermore, we also study the way to combine several open source softwares which are separately made to produce a single visualization software and optimize it for realtime visualization of massiv espatio-temporal scientific dataset. Finally, we propose a distributed shared memory based scientific visualization tool which is called "GLOVE". We present a performance comparison among GLOVE and well known open source visualization tools such as ParaView and VisIt.

키워드

참고문헌

  1. W. Schroeder, K. Martin, and B. Lorensen, "The Visualization Toolkit(4th ed.)," Kitware, ISBN 978-1-930934-19-1.
  2. J. Ahrens, B. Geveci, and C. Law, "ParaView: An End-User Tool for Large Data Visualization," Visualization Handbook, Elsevier, 2005, ISBN-13: 978-0123875822.
  3. H. Childs et al., "VisIt: An End-User Tool For Visualizing and Analysizing Very Large Data," High Performance Visualization-Enabling Extreme-Scale Scientific Insight, Oct 2012, pp.357-372.
  4. Ensight [Internet], http://www.ensight.com.
  5. M. De Wael, S. Marr, B. De Fraine, T. Van Cutsem, and W. De Meuter, "Partitioned Global Address Space Languages," ACM Computing Surveys, Vol.47, Issue 4, Article No.62, 2015.
  6. R. W. Numrich and J. Reid, "Co-Array Fortran for Parallel Programming," ACM FORTRAN FORUM, Vol.17, Issue 2, 1998.
  7. T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick, "UPC: Distributed Shared Memory Programming," Hoboken, NJ: Wiley, 2005.
  8. K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. N. Hilfinger, S. L. Graham, D. Gay, P. Colella, and A. Aiken, "Titanium: A High-performance Java Dialect," Concurrency: Practice and Experience, Vol.10, Issue 11-13, pp.825-836, 1998. https://doi.org/10.1002/(SICI)1096-9128(199809/11)10:11/13<825::AID-CPE383>3.0.CO;2-H
  9. B. L. Chamberlain, D. Callahan, and H. P. Zima, "Parallel Programmability and the Chapel Language," International Journal of High Performance Computing Applications, Vol.21, No.3, pp.291-312, 2007. https://doi.org/10.1177/1094342007078442
  10. P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar, "X10: An Object-Oriented Approach to Non-Uniform Cluster Computing," in Proc. 20th annual ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA'05), ACM, NY, USA, pp. 519-538, 2005.
  11. E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu, Guy L. Steele, and S. Tobin-Hochstadt. "The Fortress Language Specification," Technical Report. Sun Microsystems, Inc., Version 1.0, 2008.
  12. J. Nieplocha, R. J. Harrison, and R. J. Littlefield. "Global Arrays: A Portable 'Shared-Memory' Programming Model for Distributed Memory Computers," in Proceedings Supercomputing '94, pp.340-349, 1994.
  13. D. R. Jones, E. R. Jurrus, B. D. Moon, and K. A. Perrine, "Gigapixel-size Real-time Interactive Image Processing with Parallel Computers," Proceedings of Workshop on Parallel and Distributed Processing Symposium, 7, 2003.
  14. J. A. Kohl, T. Wilde, and D. E. Bernholdt, "CUMULVS: Interacting with High-Performance Scientific Simulations, for Visualization, Steering and Fault Tolerance," International Journal of High Performance Computing Applications, Vol.20, p.255, 2006. https://doi.org/10.1177/1094342006064502
  15. Z. Fan, F. Qiu, and A. E. Kaufman, "Zippy: A framework for computation and visualization on a gpu cluster," Computer Graphics Forum, Vol.27, No.2, pp.341-350, 2008. https://doi.org/10.1111/j.1467-8659.2008.01131.x
  16. "The VTK User's Guide 11th Edition," Kitware Inc., pp. 105-117, 2010.
  17. M. Kim, Y. Hur and J.-Y. Lee, "InVis: An Interactive Visualization Framework for Massive Data supporting Multiple Users," Journal of KIISE: Computing Practices and Letters, Vol.18, No.1, 2012.
  18. L. Chen and I. Fujishiro, "Optimizing Parallel Performance of Streamline Visualization for Large Distributed Flow Datasets," in 2008 IEEE Pacific Visualization Symposium, pp.87-94, 2008.
  19. J. MacQueen, "Some Methods for Classification and Analysis of Multivariate Observations," Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, pp.281-297, 1967.
  20. D. Arthur and S. Vassilvitskii, "K-means++: the Advantages of Careful Seeding," Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics Philadelphia, PA, USA, pp.1027-1035, 2007.
  21. R. Wang and X. Qian, "OpenSceneGraph 3.0: Beginner's Guide," PACKT Books, ISBN 9781849512824, 2010.
  22. J. Kim, J. Sa, S. Park, J. Park, S. Jung, Y. Yoo, and K. Cho, "Parallel CFD Computation for Vortex Flow Field around HART II Rotor Blades with Prescribed Blade Deformation," Proceedings of 22nd International Conference on Parallel Computational Fluid Dynamics, 2010.
  23. D. Camp, C. Garth, H. Childs, D. Pugmire, and K. I. Joy, "Streamline Integration Using MPI-Hybrid Parallelism on a Large Multicore Architecture," IEEE Transactions on Visualization and Computer Graphics, Vol.17, No.11, pp. 1702-1713, 2011. https://doi.org/10.1109/TVCG.2010.259