DOI QR코드

DOI QR Code

순산소 전로의 증기드럼 내의 3차원 열 유동 해석모델 개발

Development of Three-dimensional Thermo-fluid Numerical Model for Steam Drum of a Basic Oxygen Furnace

  • 투고 : 2015.09.25
  • 심사 : 2016.02.23
  • 발행 : 2016.08.01

초록

순산소 전로 후드의 일산화탄소와 열회수를 위해서는 고효율의 증기를 발생시키는 증기드럼의 장착이 필요하다. 그러나 제선 제강공정에서 증기발생은 간헐적이거나 주기적인 산소 취입공정기간에 제한적이다. 따라서, 증기드럼은 전로의 주기에 따른 산소의 취련기간 동안 효율적으로 증기를 발생시키도록 최적 설계되어야 한다. 따라서 본 연구에서는 다양한 운전조건 및 기하학적 형상변화가 증기드럼 내의 열유동 특성과 성능에 미치는 효과를 예측할 수 있는 3차원 전산유체역학 모델을 제안하였다. 본 모델은 유체유동 및 열전달 뿐만 아니라 계면유동에서의 증발 및 응축을 유한체적법을 사용하여 고려하였다. 본 모델의 예측성능을 검증하기 위하여 실험에서 구한 증기발생량과 비교하였으며 3.2%의 상대오차를 보였다.

The efficient steam drum should be required to reduce carbon oxide emissions and heat recovery in oxygen converter hood system. However, steam generation is limited to the time of the oxygen blowing period, which is intermittent or cyclical in operation of steel-making process. Thus, steam drum should be optimized for an effective steam generation during the oxygen blowing portion of the converter cycle. In this study, a three-dimensional computational fluid dynamics (CFD) model has been developed to describe the impacts of changing various operating conditions and geometric shape on thermo-fluid characteristics and performance of the steam drum. This model encompasses not only fluid flow and heat transfer but also evaporation and condensation at the interfacial surface in the steam drum by using VOF (Volume of Fluid) method. To validate the prediction performance of this model, comparison of the steam flow rate between numerical and experimental result has been performed, resulting in the accuracy of the relative error by less than 3.2%.

키워드

참고문헌

  1. Gerunda, A., "How to Size Liquid-Vapour Separators," Chem. Eng. 88, 81-84(1984).
  2. Zarrouk, S. J. and Rurnanto, M. H., "Geothermal Steam-water Separators: Design Overview," Geothermics, 53, 236-254(2015). https://doi.org/10.1016/j.geothermics.2014.05.009
  3. Pointon, A. R., Mills, T. D., Seil, G. J. and Zhang, Q., "Computational Fluid Dynamic Techniques for Validating Geothermal Separator Sizing," GRC Trans., 33, 943-948(2009).
  4. Ferng, Y. M. and Chang, H. J., "CFD Investigating the Impacts of Changing Operating Conditions on the Thermal-hydraulic Characteristics in a Steam Generator," Applied Thermal Engineering, 28(5-6), 414-422(2008). https://doi.org/10.1016/j.applthermaleng.2007.05.014
  5. Ahn, J., Lee, Y. S. and Kim, J. J., "Steam Drum Design for a HRSG based on CFD," Journal of Korean Society for Computational Fluids Engineering, 16(1), 67-72(2011). https://doi.org/10.6112/kscfe.2011.16.1.067
  6. Hardt, S. and Wondra, F., "Evaporation Model for Interfacial Flows Based on a Continuum-field Representation of the Source Terms," Journal of Computational Physics, 227(11), 5871-5895(2008). https://doi.org/10.1016/j.jcp.2008.02.020
  7. "User Guide STAR-CCM_ Ver.9.04," CD-adapco, UK(2014).
  8. Rich, B. R., "An Investigation of Heat Transfer from an Inclined Flat Plate in Free Convection," Trans. ASME, 75, 489-499(1953).
  9. Welch, S. W. J. and Wilson, J., "A Volume of Fluid Based Method for Fluid Flows with Phase Change," J. Comput. Phys. 160, 662-682(2000). https://doi.org/10.1006/jcph.2000.6481
  10. Reid, R. C., Prausnitz, J. M. and Poling, B. E., The properties of gases and liquids, 4th Ed., McGraw-Hill, New York(2000).