DOI QR코드

DOI QR Code

Production of Fermentable Sugar from Lipid Extracted Algae using Hot Water Pretreatment

열수전처리를 이용한 탈지미세조류로부터 발효당 생산 공정 개발

  • Lee, Jihyun (Department of Food Science, Sunmoon University) ;
  • Shin, Seulgi (Department of Food Science, Sunmoon University) ;
  • Choi, Kanghoon (Department of Food Science, Sunmoon University) ;
  • Jo, Jaemin (Department of Food Science, Sunmoon University) ;
  • Kim, JinWoo (Department of Food Science, Sunmoon University)
  • Received : 2016.03.01
  • Accepted : 2016.03.31
  • Published : 2016.08.01

Abstract

The microalgae have cellulose as a main structural component of their cell wall and the lignin content in microalgae is much lower than other lignocellulosic biomass. Therefore, fermentable sugar production from microalgae (Tetraselmis KCTC 12236BP) can be carried out under pretreatment without high temperature and high pressure. It was investigated that the effect of hot-water pretreatment using sulfuric acid for lipid extracted algae which is expected to be a next generation biomass. The effects of three major variables including extraction temperature, acid concentration and time on the enzymatic hydrolysis were investigated. Among the tested variables, temperature and acid concentration showed significant effects and optimum pretreatment conditions for the economic operation criteria were obtained as follows: reaction temperature of $120^{\circ}C$, sulfuric acid concentration of 2 mol and pretreatment time of 40 min. Under the optimum conditions of acidic hot water pretreatment, experimentally obtained hydrolysis yield were 95.9% which showed about 2.1 fold higher compared with enzymatic hydrolysis process. Therefore, acid pretreatment under mild condition was proven to be an effective method for fermentable sugar production from lipid extracted microalgae.

미세조류 세포벽은 셀룰로오스가 주요 구성성분으로 리그닌을 포함하지 않아 낮은 온도의 전처리 조건에서도 효과적으로 셀룰로오스와 헤미셀룰로오스 분해가 가능하다. 차세대 바이오매스로 주목 받는 미세조류(Tetraselmis KCTC 12236BP)로부터 $120^{\circ}C$ 이하의 낮은 온도 조건에서 열수전처리를 이용한 발효당 생산 증대를 위해 공정조건을 최적화하였다. 주요 공정조건인 추출온도, 황산농도와 추출시간에 따른 당화율 변화를 확인하였을 때, 온도와 황산농도가 글루코오스 생산에 큰 영향을 컸으며 당화율이 비례하여 증가하는 경향을 보였다. 경제성을 고려한 열수전처리 최적조건은 $120^{\circ}C$, 2 mol 황산, 40분으로 95.9%의 당화율을 얻을 수 있었다. 탈지미세조류의 황산 열수전처리와 효소당화를 비교했을 때, 황산 열수전처리의 당화율이 2.1배 이상 높고 전처리 시간이 짧아 황산 열수전처리가 효소당화에 비해 효과적인 공정임을 확인하였다.

Keywords

References

  1. Mclaren, J. S., "Crop Biotechnology Provides an Opportunity to Develop a Sustainable Future," Trends Biotechnol., 23, 339-342(2005). https://doi.org/10.1016/j.tibtech.2005.04.004
  2. Shin, H, J., Park, J. H., Jung, W. K., Cho, H. and Kim, S. W., "Development of Biorefinery Process using Microalgae," J. Korean Soc. Precision Eng., 28, 154-167(2011).
  3. Kloareg, B. and Quatrano, R. S., "Structure of the Cell Walls of Marine Algae and Ecophysiological Functions of the Matrix Polysaccharides," Oceanogr. Mar. Biol. Annu. Rev., 26, 259-315(1988).
  4. Yun, Y. M., Jung, K. W., Kim, D. H., Oh, Y. K. and Shin, H, S., "Optimization of $Bio-H_2$ Production from Acid Pretreated Microalgal Biomass," J. Org. Resour. Recycle Assoc., 20, 78-86(2012).
  5. National Renewable Energy Laboratory, "Standard Biomass Analytical Procedures," http://www.nrel.gov/biomass/analytical procedures_html.
  6. Shrestha, R. K., Hur, O, S. and Kim, T. H., "Pretreatment of Corn Stover for Improved Enzymatic Saccharification using Ammonia Circulation Reactor (ACR)," Korean Chem. Eng. Res., 51, 335-341(2013). https://doi.org/10.9713/kcer.2013.51.3.335
  7. Ahn, S. J., Cayetano, R. D., Kim, T. H. and Kim, J. S., "Lactic Acid Production from Hydrolysate of Pretreated Cellulosic Biomass by Lactobacillus Rhamnosus," Korean Chem. Eng. Res., 53, 1-5 (2015). https://doi.org/10.9713/kcer.2015.53.1.1
  8. Cayetano, R. D., Kim, T. H. and Um, B. H., "Bioconversion Strategy in Conversion of Lignocellulosic Biomass upon Various Pretreatment Methods using Sulfuric Acid and Aqueous Ammonia," Korean Chem. Eng. Res., 52, 45-51(2014). https://doi.org/10.9713/kcer.2014.52.1.45
  9. Lee, S. B., Jung, S. K. and Lee, J. D., "Production of Rice Straw Based Cellulosic Ethanol Using Acidic Saccharification," Appl. Chem. Eng., 21, 349-352(2010).
  10. Andric, P., Meyer, A. S., Jensen, P. A. and Dam-Johansen, K., "Reactor Design for Minimizing Product Inhibition During Enzymatic Lignocellulose Hydrolysis," Biotechnol. Adv., 28, 407-425(2010). https://doi.org/10.1016/j.biotechadv.2010.02.005
  11. Carvalheiro, F., Duarte, L. C. and Girio, F. M., "Hemicellulose Biorefineries: a Review on Biomass Pretreatments," J. Sci. Ind. Res., 67, 849-864(2008).
  12. Mosier, N., Wyman, C. E., Dale, B. E., Elander, R. T., Lee, Y. Y., Holtzapple, M. and Ladisch, M. R., "Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass," Bioresource Technol., 96, 673-686(2005). https://doi.org/10.1016/j.biortech.2004.06.025
  13. Liu, C. G. and Wyman, C. E., "Partial Flow of Compressed-Hot Water Through Corn Stover to Enhance Hemicellulose Sugar Recovery and Enzymatic Digestibility of Cellulose," Bioresource Technol., 96, 1978-1985(2005). https://doi.org/10.1016/j.biortech.2005.01.012