DOI QR코드

DOI QR Code

주파수 잠금회로를 이용한 발진기의 위상잡음 개선

Improvement of Phase Noise for Oscillator Using Frequency Locked Loop

  • 김욱래 (충남대학교 전파공학과) ;
  • 이창대 (충남대학교 전파공학과) ;
  • 김용남 (충남대학교 전파공학과) ;
  • 임평순 (충남대학교 전파공학과) ;
  • 이동현 (충남대학교 전파공학과) ;
  • 염경환 (충남대학교 전파공학과)
  • Kim, Wook-Lae (Department of Radio Science and Engineering, Chungnam National University) ;
  • Lee, Chang-Dae (Department of Radio Science and Engineering, Chungnam National University) ;
  • Kim, Yong-Nam (Department of Radio Science and Engineering, Chungnam National University) ;
  • Im, Pyung-Soon (Department of Radio Science and Engineering, Chungnam National University) ;
  • Lee, Dong-Hyun (Department of Radio Science and Engineering, Chungnam National University) ;
  • Yeom, Kyung-Whan (Department of Radio Science and Engineering, Chungnam National University)
  • 투고 : 2016.05.18
  • 심사 : 2016.07.11
  • 발행 : 2016.08.01

초록

본 논문에서는 주파수 잠금회로(FLL: Frequency Locked Loop)를 이용하여 발진기의 위상잡음을 개선할 수 있음을 보였다. 1차적으로 헤어-핀 공진기를 이용하여 전압제어발진기(VCO)를 제작하였다. 제작된 VCO는 발진주파수 5 GHz에서 위상잡음을 측정한 결과, 1 kHz offset 주파수에서 -53.1 dBc/Hz를 보였다. 위상잡음을 개선하기 위하여, VCO에 5 GHz 공진기로 구성된 주파수 검출기(frequency detector), 루프 필터, 전위변환기(level shifter)를 이용 궤환회로를 구성, 주파수 잠금회로를 구성하였다. 제작된 주파수 잠금회로는 5 GHz의 주파수에서 발진하고, 1 kHz offset 주파수에서 -120.6 dBc/Hz의 위상잡음을 보였다. 따라서 주파수 잠금회로를 이용, VCO의 위상잡음을 획기적으로 약 67.5 dB 개선할 수 있음을 보였다. 또한, 얻어진 주파수 잠금회로를 이용한 발진기의 위상잡음 성능은 수정발진기의 위상잡음과 비견할만한 것이다.

In this paper, we showed the phase noise of voltage controlled oscillator(VCO) can be radically improved using FLL(Frequency Locked Loop). At first, a 5 GHz VCO is fabricated using a hair-pin resonator. The fabricated VCO shows a phase noise of -53.1 dBc/Hz at 1 kHz frequency offset. In order to improve the phase noise of the fabricated VCO, a FLL is constructed using the feedback loop that consists of the VCO, a frequency detector composed of 5 GHz resonator, loop-filter, and level shifter. The fabricated FLL is designed to oscillate at a frequency of 5 GHz, and its measured phase noise is about -120.6 dBc/Hz at 1 kHz offset frequency. As a result, the phase noise of VCO can be radically improved by about 67.5 dB applying FLL. In addition, the measured phase noise performance is close to that of crystal oscillator.

키워드

참고문헌

  1. J. -C. Nallatamby, M. Prigent, M. Camiade, A. Sion, C. Gourdon, and J. J. Obregon, "An advanced low-frequency noise model of GaInP-GaAs HBT for accurate prediction of phase noise in oscillators", IEEE Trans. Microw. Theory Tech., vol. 53, pp. 1601-1612, May 2005. https://doi.org/10.1109/TMTT.2005.847050
  2. P. A. Traverso, C. Florian, M. Borgarino, and F. Filicori, "An empirical bipolar device nonlinear noise modeling approach for large-signal microwave circuit analysis", IEEE Trans. Microw. Theory Tech., vol. 54, pp. 4341-4352, Dec. 2006. https://doi.org/10.1109/TMTT.2006.885991
  3. C. Floran, P. A. Traverso, and F. Filicori, "The charge-controlled nonlinear noise modeling approach for the design of MMIC GaAs-pHEMT VCOs for space applications", IEEE Trans. Microw. Theory Tech., vol. 59, pp. 901-912, Apr. 2011. https://doi.org/10.1109/TMTT.2011.2104976
  4. Y. -T. Lee, J. -S. Lim, C.-S. Kim, D. Ahn, and S. Nam, "A compact-size microstrip spiral resonator and its application to microwave oscillator", IEEE Microw. Wireless Comp. Lett., vol. 12, no. 10, pp. 375-377, Oct. 2002. https://doi.org/10.1109/LMWC.2002.804556
  5. L. -H. Hsieh, K. Chang, "High-efficiency piezoelec-trictransducer tuned feedback microstrip ring-resonator oscillators operation at high resonant frequencies", IEEE Trans. Microw. Theory Tech., vol. 51, pp. 1141-1145, Apr. 2003. https://doi.org/10.1109/TMTT.2003.809671
  6. Y. -T. Lee, J. Lee, and S. Nam, "High-Q active resonators using amplifiers and their applications to low phase-noise free-running and voltage-controlled oscillatros", IEEE Trans. Microw. Theory Tech., vol. 52, pp. 2621-2626, Nov. 2004. https://doi.org/10.1109/TMTT.2004.837199
  7. B. I. Son, H. C. Jeong, K. W. Yeom, "Design of a low phase noise voltage tuned DRO based on improved dielectric resonator coupling structure", in Proc. Asia Pacific Microwave Conf., Kaohsiung, pp. 1121-1123, Dec. 2012.
  8. 염경환, 능동초고주파회로 설계 입문, 홍릉과학출판사, 2006년.
  9. Andrew Gorevoy, Micran, Tomsk, Russia, "A low noise oscillator based on a conventional dielectric resonator", Microwave Journal, vol. 56, issue 11, pp. 84-94, 6, Nov. 2013.
  10. Juan M. Avila-Ruiz, "Frequency locked loop architecture for phase noise reduction in wideband low-noise microwave oscillators", IET Microwaves, Antennas & Propagation, pp. 869-875, Aug. 2013.
  11. A. S. Gupta, "High spectral purity microwave oscillator: design using conventional air-dielectric cavity", IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society, pp. 1225-1231, Oct. 2004.
  12. 손범익, 정해창, 염경환, "루프 군지연을 이용한 저위상 잡음 5 GHz 전압제어 유전체 공진기 발진기 설계", 한국전자파학회논문지, 25(3), pp. 269-281, 2014년 3월. https://doi.org/10.5515/KJKIEES.2014.25.3.269
  13. E5052B, Signal Source Analyzer, 10 MHz to 7, 26.5, or 110 GHz, Agilent Technologies, 5989-0903EN, 2007 [Online] Available: http://www.agilent.com/
  14. Z. Galani, M. J. Bianchini, R. W. Laton, and J. B. Cole, "Analysis and design of a single resonator GaAs FET oscillator with noise degeneration", IEEE Trans. Microw. Theory and Tech., vol. 32, no. 12, pp. 1556-1565, Dec. 1984. https://doi.org/10.1109/TMTT.1984.1132894
  15. N5230A PNA-L Network Analyzer, 10 MHz to 20 GHz Available: http://www.agilent.com/
  16. PS2-50-450/8S, 2-Way Power Divider, 4.0 GHz to 27.0 GHz, Pulsar Microwave Corporation, Available: http://www.pulsarmicrowave.com/
  17. M1-0420, Double Balanced Mixer, Marki Microwave, Available: http://www.markimicrowave.com/
  18. 83640B, Synthesized Swept-Signal Generator, 0.01 - 40 GHz, Keysight Technologies, Available: http://www.keysight.com/
  19. HMC313, GaAs InGaP HBT MMIC Amplifier, Hittite, Available: http://www.hittite.com/
  20. SMD6000, Double Balanced Mixer, Synergy Microwave Corporation, Available: http://synergymwave.com/
  21. LM6152, Dual and Quad High Speed/Low Power 75 MHz GBW Rail-to-Rail I/O Operational Amplifiers, National Semiconductor, Available: http://www.ti.com/
  22. AD8137, Low Cost, Low Power, Differential ADC Driver, Analog Devices, Available: http://www.analog.com/
  23. RO4350, Laminate, ROGERS, Available: http://www.rogerscorp.com/
  24. AS318-B-100, Accusilicon AS318-B Series Professional Audiophile Crystal Oscillator, Available: http://www.accusilicon.com/