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Abstract. In [3] the main theorem was erroneously stated. We needed to assume that

the irrationality measure of 1/r is finite to prove the theorem.

The statement of Theorem 1.2 in [3] should be as follows:

Theorem 1.2.([3]) Let r be a real number satifying 5/6 < r < 7/6. We assume
that the irrationality measure of 1/r is finite. Then

2π lim sup
N→∞

log
∣∣JN (

E; exp(2πr
√
−1/N)

)∣∣
N

=
2Λ

(
πr + θ(r)/2

)
− 2Λ

(
πr − θ(r)/2

)
r

.

Moreover if r is irrational or r = 1, then

2π lim
N→∞

log
∣∣JN (

E; exp(2πr
√
−1/N)

)∣∣
N

=
2Λ

(
πr + θ(r)/2

)
− 2Λ

(
πr − θ(r)/2

)
r

,

and if r ̸= 1 and rational, then

2π lim inf
N→∞

log
∣∣JN (

E; exp(2πr
√
−1/N)

)∣∣
N

= 0.

We also need to add the same codition ‘the irrationality measure of 1/r is finite’
to Proporision 7.1.

Remark. It can be proved that µ(1/r) = µ(r). The author thanks Y. Tachiya for
pointing this out.
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In the following I prove Theorem 1.2 above assuming the finiteness of the irra-
tionality measure of 1/r.

Put B := N(1−r)
r and D := N(2π−θ(r))

2πr with θ(r) := arccos (cos(2πr)− 1/2).
Here arccos takes its value between 0 and π. Note that 0 ≤ B < D < 1 and
g(B) = 0. The following equality may not hold when 1/r has infinite irrationality
measure:

(1) lim
N→∞

1

N

⌊D⌋∑
j=1

log |2 sin(πrj/N + πr)| = 1

πr

∫ π−θ(r)/2+πr

πr

log |2 sinx| dx.

However, the equatity does hold when the irrationality measure of r is finite.
Here the irrationality measure is defined as follows. See for example [2, Defini-
tion 9.6, p. 141].

Definition 1. Let α be a real number. The irrationality measure (or the irra-
tionality exponent) µ(α) is defined to be the infimum of µ such that there exists a

constant C > 0 with

∣∣∣∣α− p

q

∣∣∣∣ ≥ C

qµ
for any rational number

p

q
with q > 0.

Note that µ(α) = 1 when α is rational, and that µ(α) ≥ 2 if α is irrational.
Note also that with respect to the Lebesgue measure, almost all real numbers have
irrationallity measure 2 [1, Theorem E.3].

We first prove a couple of lemmas. Put h(x) := log |2 sinx|.

Lemma 1. Suppose that 5/6 < r < 1. Then we have

lim
N→∞

1

N
h

(
πr(⌊B⌋ − 1)

N
+ πr

)
= lim

N→∞

1

N
h

(
πr(⌊B⌋+ 2)

N
+ πr

)
= 0.

Proof. Since N/r − 1 < ⌊N/r⌋ ≤ N/r, we have

π − 2πr

N
<
πr

N

(⌊
N

r

⌋
− 1

)
≤ π − πr

N

and

π +
πr

N
<
πr

N

(⌊
N

r

⌋
+ 2

)
≤ π +

2πr

N
.

Since B = N(1−r)
r and r < 1, we have

πr

N
⌊B⌋+ πr =

πr

N

⌊
N

(
1

r
− 1

)⌋
+ πr =

πr

N

⌊
N

r

⌋
.

Since sinx is decreasing for π/2 < x < 3π/2, we have

sin

(
π − 2πr

N

)
> sin

(
πr

N

(⌊
N

r

⌋
− 1

))
≥ sin

(
π − πr

N

)
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and

sin
(
π +

πr

N

)
> sin

(
πr

N

(⌊
N

r

⌋
+ 2

))
≥ sin

(
π +

2πr

N

)
.

So we have

sin

(
2πr

N

)
> sin

(
πr

N

(⌊
N

r

⌋
− 1

))
≥ sin

(πr
N

)
and

sin
(πr
N

)
<

∣∣∣∣sin(πrN
(⌊

N

r

⌋
+ 2

))∣∣∣∣ ≤ sin

(
2πr

N

)
and the required formulas follow since

lim
N→∞

h(πr/N)/N = lim
N→∞

h(2πr/N)/N = 0.

2

Lemma 2. Suppose that 5/6 < r < 1 and that the irrationality measure of 1/r is
finite. Then we have

lim
N→∞

1

N
h

(
πr⌊B⌋
N

+ πr

)
= lim

N→∞

1

N
h

(
πr(⌊B⌋+ 1)

N
+ πr

)
= 0.

Proof. Let µ be the irrationality measure of 1/r. Then from the definition of the
irrationality measure, for any ε > 0 there exists C > 0 such that

(2)

∣∣∣∣1r − ⌊N/r⌋
N

∣∣∣∣ ≥ C

Nµ+ε
.

So we have
N

r
−
⌊
N

r

⌋
≥ CN

Nµ+ε
.

Since ⌊N/r⌋ > N/r − 1, we have

π − πr

N
<
πr

N

⌊
N

r

⌋
≤ π − Cπr

Nµ+ε
.

Since sinx is decreasing when π/2 < x < π, we have

sin

(
π − Cπr

Nµ+ε

)
≤ sin

(
πr

N

⌊
N

r

⌋)
< sin

(
π − πr

N

)
and so

sin

(
Cπr

Nµ+ε

)
≤ sin

(
πr

N

⌊
N

r

⌋)
< sin

(πr
N

)
.
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Since 2x/π < sinx < x for 0 < x < π/2 we have

1

N
log

(
4Cr

Nµ+ε

)
<

1

N
h

(
πr⌊B⌋
N

+ πr

)
<

1

N
log

(
2πr

N

)
and so we have

(3) lim
N→∞

1

N
h

(
πr⌊B⌋
N

+ πr

)
= 0.

Similarly, for any ε > 0 there exists C ′ > 0 such that∣∣∣∣1r − ⌊N/r⌋+ 1

N

∣∣∣∣ ≥ C ′

Nµ+ε
.

Since ⌊N/r⌋ ≤ N/r, we have

π +
C ′πr

Nµ+ε
≤ πr

N

(⌊
N

r

⌋
+ 1

)
≤ π +

πr

N
.

Since sinx is decreasing for π < x < 3π/2, we have

sin

(
π +

C ′πr

Nµ+ε

)
≥ sin

(
πr

N

(⌊
N

r

⌋
+ 1

))
≥ sin

(
π +

πr

N

)
and so

sin

(
C ′πr

Nµ+ε

)
≤

∣∣∣∣sin(πrN
(⌊

N

r

⌋
+ 1

))∣∣∣∣ ≤ sin
(πr
N

)
.

Since 2x/π < sinx < x for 0 < x < π/2 we have

log

(
4C ′r

Nµ+ε

)
≤ log 2

∣∣∣∣sin(πr(⌊B⌋+ 1)

N
+ πr

)∣∣∣∣ ≤ log

(
2πr

N

)
.

Therefore we have

lim
N→∞

1

N
h

(
πr(⌊B⌋+ 1)

N
+ πr

)
= 0,

proving the lemma. 2

Now we prove (1) assuming the finiteness of µ(1/r).

Proof of (1).
Put h(x) := log |2 sinx| and let r is an irrational number with 5/6 < r < 1. We

will show

lim
N→∞

1

N

⌊B⌋∑
j=1

h(πrj/N + πr) =
1

πr

∫ π

πr

h(x) dx(4)
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and

lim
N→∞

1

N

⌊D⌋∑
j=⌊B⌋+1

h(πrj/N + πr) =
1

πr

∫ π−θ(r)/2+πr

π

h(x) dx(5)

First we prove (4).
Since h(x) is decreasing when πr < x < π, we have

πr

N

⌊B⌋∑
j=1

h(πrj/N + πr) <

∫ πr⌊B⌋/N+πr

πr

h(x) dx(6)

and

∫ πr(⌊B⌋−1)/N+πr

πr

h(x) dx <
πr

N

⌊B⌋−2∑
j=0

h(πrj/N + πr).(7)

Since ⌊B⌋ = ⌊N/r⌋ −N , we have

π − πr

N
<
πr⌊B⌋
N

+ πr ≤ π.

Now we choose δ so that

πr +
πr(⌊B⌋ − 1)

N
< π − δ < πr +

πr⌊B⌋
N

.

Since h(x) < 0 when πr < x < π, we have∫ πr⌊B⌋/N+πr

πr

h(x) dx <

∫ π−δ

πr

h(x) dx.

So from (6) we have

1

N

⌊B⌋∑
j=1

h(πrj/N + πr) <
1

πr

∫ π−δ

πr

h(x) dx.

Similarly since ∫ π−δ

πr

h(x) dx <

∫ πr(⌊B⌋−1)/N+πr

πr

h(x) dx,

we have

1

πr

∫ π−δ

πr

h(x) dx <
1

N

⌊B⌋−2∑
j=0

h(πrj/N + πr)
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from (7).
Therefore we have

1

πr

∫ π−δ

πr

h(x) dx− 1

N
h(πr) +

1

N
h

(
πr⌊B⌋
N

+ πr

)
+

1

N
h

(
πr(⌊B⌋ − 1)

N
+ πr

)

<
1

N

⌊B⌋∑
j=1

h

(
πrj

N
+ πr

)

<
1

πr

∫ π−δ

πr

h(x) dx.

From Lemmas 1 and 2 we have

lim
N→∞

1

N

⌊B⌋∑
j=1

h

(
πrj

N
+ πr

)
=

1

πr

∫ π

πr

h(x) dx.

Next we prove (5). We choose δ so that

πr +
πr(⌊B⌋+ 1)

N
< π + δ < πr +

πr(⌊B⌋+ 2)

N
.

Since h(x) is increasing when π < x < π + πr, h(x) < 0 when π < x < 7π/6,
and h(x) > 0 when 7π/6 < x < π + πr, we have∫ π−θ(r)/2+πr

π+δ

h(x) dx >

∫ π−θ(r)/2+πr

πr(⌊B⌋+1)/N+πr

h(x) dx

>

∫ πr⌊D⌋/N+πr

πr(⌊B⌋+1)/N+πr

h(x) dx

>
πr

N

⌊D⌋−1∑
j=⌊B⌋+1

h

(
πrj

N
+ πr

)

if N is sufficiently large.
Similarly we have∫ π−θ(r)/2+πr

π+δ

h(x) dx <

∫ π−θ(r)/2+πr

πr(⌊B⌋+2)/N+πr

h(x) dx

<

∫ πr(⌊D⌋+1)+πr

πr(⌊B⌋+2)/N+πr

h(x) dx

<
πr

N

⌊D⌋+1∑
j=⌊B⌋+3

h

(
πrj

N
+ πr

)
.
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Therefore we have

1

πr

∫ π−θ(r)/2+πr

π+δ

h(x) dx− 1

N
h

(
πr(⌊D⌋+ 1)

N
+ πr

)
+

1

N
h

(
πr(⌊B⌋+ 1)

N
+ πr

)
+

1

N
h

(
πr(⌊B⌋+ 2

N
+ πr

)

<
1

N

⌊D⌋∑
j=⌊B⌋+1

h

(
πrj

N
+ πr

)

<
1

πr

∫ π−θ(r)/2+πr

π+δ

h(x) dx+
1

N
h

(
πr(⌊D⌋)

N
+ πr

)
.

From Lemmas 1 and 2 we have

lim
N→∞

1

N

⌊D⌋∑
j=⌊B⌋+1

h

(
πrj

N
+ πr

)
=

1

πr

∫ π−θ(r)/2+πr

π+δ

h(x) dx

since h(x) is continuous near π − θ(r) + πr. 2

In a similar way we can prove the formula when 1 < r < 7/6.
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