Semi-Slant Lightlike Submanifolds of Indefinite Sasakian Manifolds

Shiv Sharma Shukla and Akhilesh Yadav*
Department of Mathematics, University of Allahabad, Allahabad-211002, India
e-mail : ssshukla_au@rediffmail.com and akhilesh_mathau@rediffmail.com

Abstract. In this paper, we introduce the notion of semi-slant lightlike submanifolds of indefinite Sasakian manifolds giving characterization theorem with some non-trivial examples of such submanifolds. Integrability conditions of distributions D_{1}, D_{2} and $R a d T M$ on semi-slant lightlike submanifolds of an indefinite Sasakian manifold have been obtained. We also obtain necessary and sufficient conditions for foliations determined by above distributions to be totally geodesic.

1. Introduction

The theory of lightlike submanifolds of a semi-Riemannian manifold was introduced by Duggal and Bejancu ([11]). A submanifold M of a semi-Riemannian manifold \bar{M} is said to be lightlike submanifold if the induced metric g on M is degenerate, i.e. there exists a non-zero $X \in \Gamma(T M)$ such that $g(X, Y)=0$, $\forall Y \in \Gamma(T M)$. Lightlike geometry has its applications in general relativity, particularly in black hole theory, which gave impetus to study lightlike submanifolds of semi-Riemannian manifolds equipped with certain structures. Various classes of lightlike submanifolds of indefinite Sasakian manifolds are defined according to the behaviour of distributions on these submanifolds with respect to the action of $(1,1)$ tensor field ϕ in Sasakian structure of the ambient manifolds. Such submanifolds have been studied by Duggal and Sahin in ([12], [13]). In [3], Shahin studied screen-slant lightlike submanifolds. Further Sahin and Yildirim studied slant lightlike submanifolds of indefinite Sasakian manifolds in [4].
In [1], A. Lotta introduced the concept of slant immersion of a Riemannian manifold into an almost contact metric manifold. The geometry of slant and semi-slant

[^0]submanifolds of Sasakian manifolds was studied by Cabrerizo, J. L., Carriazo, A., Fernandez, L. M. and Fernandez, M., in ([9], [10]). On the other hand the theory of slant, contact Cauchy-Riemann lightlike submanifolds of indefinite Sasakian manifolds have been studied in ([4], [13]). Thus motivated sufficiently, we introduce the notion of semi-slant lightlike submanifolds of indefinite Sasakian manifolds. This new class of lightlike submanifolds of an indefinite Sasakian manifold includes slant, contact Cauchy-Riemann lightlike submanifolds as its sub-cases. The paper is arranged as follows. There are some basic results in section 2 . In section 3, we study semi-slant lightlike submanifolds of an indefinite Sasakian manifold, giving some examples. Section 4 is devoted to the study of foliations determined by distributions on semi-slant lightlike submanifolds of indefinite Sasakian manifolds.

2. Preliminaries

A submanifold $\left(M^{m}, g\right)$ immersed in a semi-Riemannian manifold $\left(\bar{M}^{m+n}, \bar{g}\right)$ is called a lightlike submanifold [11] if the metric g induced from \bar{g} is degenerate and the radical distribution RadTM is of rank r, where $1 \leq r \leq m$. Let $S(T M)$ be a screen distribution which is a semi-Riemannian complementary distribution of RadTM in TM, that is

$$
\begin{equation*}
T M=\operatorname{Rad} T M \oplus_{\text {orth }} S(T M) \tag{2.1}
\end{equation*}
$$

Now consider a screen transversal vector bundle $S\left(T M^{\perp}\right)$, which is a semiRiemannian complementary vector bundle of RadTM in $T M^{\perp}$. Since for any local basis $\left\{\xi_{i}\right\}$ of $R a d T M$, there exists a local null frame $\left\{N_{i}\right\}$ of sections with values in the orthogonal complement of $S\left(T M^{\perp}\right)$ in $[S(T M)]^{\perp}$ such that $\bar{g}\left(\xi_{i}, N_{j}\right)=\delta_{i j}$ and $\bar{g}\left(N_{i}, N_{j}\right)=0$, it follows that there exists a lightlike transversal vector bundle $\operatorname{ltr}(T M)$ locally spanned by $\left\{N_{i}\right\}$. Let $\operatorname{tr}(T M)$ be complementary (but not orthogonal) vector bundle to $T M$ in $\left.T \bar{M}\right|_{M}$. Then

$$
\begin{equation*}
\operatorname{tr}(T M)=\operatorname{ltr}(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right) \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\left.T \bar{M}\right|_{M}=T M \oplus \operatorname{tr}(T M) \tag{2.3}
\end{equation*}
$$

$$
\left.T \bar{M}\right|_{M}=S(T M) \oplus_{\text {orth }}[\operatorname{RadTM} \oplus l \operatorname{tr}(T M)] \oplus_{\text {orth }} S\left(T M^{\perp}\right)
$$

Following are four cases of a lightlike submanifold $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$:
Case. $1 \quad$ r-lightlike if $r<\min (m, n)$,
Case. $2 \quad$ co-isotropic if $r=n<m, S\left(T M^{\perp}\right)=\{0\}$,
Case. $3 \quad$ isotropic if $r=m<n, S(T M)=\{0\}$,
Case. 4 totally lightlike if $r=m=n, S(T M)=S\left(T M^{\perp}\right)=\{0\}$.
The Gauss and Weingarten formulae are given as

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{t} V \tag{2.6}
\end{equation*}
$$

for all $X, Y \in \Gamma(T M)$ and $V \in \Gamma(\operatorname{tr}(T M))$, where $\nabla_{X} Y, A_{V} X$ belong to $\Gamma(T M)$ and $h(X, Y), \nabla_{X}^{t} V$ belong to $\Gamma(\operatorname{tr}(T M)) . \nabla$ and ∇^{t} are linear connections on M and on the vector bundle $\operatorname{tr}(T M)$ respectively. The second fundamental form h is a symmetric $F(M)$-bilinear form on $\Gamma(T M)$ with values in $\Gamma(\operatorname{tr}(T M))$ and the shape operator A_{V} is a linear endomorphism of $\Gamma(T M)$. From (2.5) and (2.6), for any $X, Y \in \Gamma(T M), N \in \Gamma(l t r(T M))$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$, we have

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h^{l}(X, Y)+h^{s}(X, Y) \tag{2.7}\\
& \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{l} N+D^{s}(X, N) \tag{2.8}\\
& \bar{\nabla}_{X} W=-A_{W} X+\nabla_{X}^{s} W+D^{l}(X, W) \tag{2.9}
\end{align*}
$$

where $h^{l}(X, Y)=L(h(X, Y)), h^{s}(X, Y)=S(h(X, Y)), D^{l}(X, W)=L\left(\nabla_{X}^{t} W\right)$, $D^{s}(X, N)=S\left(\nabla_{X}^{t} N\right) . \quad L$ and S are the projection morphisms of $\operatorname{tr}(T M)$ on $\operatorname{ltr}(T M)$ and $S\left(T M^{\perp}\right)$ respectively. ∇^{l} and ∇^{s} are linear connections on $\operatorname{ltr}(T M)$ and $S\left(T M^{\perp}\right)$ called the lightlike connection and screen transversal connection on M respectively.
Now by using (2.5), (2.7)-(2.9) and metric connection $\bar{\nabla}$, we obtain

$$
\begin{gather*}
\bar{g}\left(h^{s}(X, Y), W\right)+\bar{g}\left(Y, D^{l}(X, W)\right)=g\left(A_{W} X, Y\right), \tag{2.10}\\
\bar{g}\left(D^{s}(X, N), W\right)=\bar{g}\left(N, A_{W} X\right) . \tag{2.11}
\end{gather*}
$$

Denote the projection of $T M$ on $S(T M)$ by \bar{P}. Then from the decomposition of the tangent bundle of a lightlike submanifold, for any $X, Y \in \Gamma(T M)$ and $\xi \in$ $\Gamma(\operatorname{RadTM})$, we have

$$
\begin{gather*}
\nabla_{X} \bar{P} Y=\nabla_{X}^{*} \bar{P} Y+h^{*}(X, \bar{P} Y) \tag{2.12}\\
\nabla_{X} \xi=-A_{\xi}^{*} X+\nabla_{X}^{* t} \xi \tag{2.13}
\end{gather*}
$$

By using above equations, we obtain

$$
\begin{gather*}
\bar{g}\left(h^{l}(X, \bar{P} Y), \xi\right)=g\left(A_{\xi}^{*} X, \bar{P} Y\right), \tag{2.14}\\
\bar{g}\left(h^{*}(X, \bar{P} Y), N\right)=g\left(A_{N} X, \bar{P} Y\right), \tag{2.15}\\
\bar{g}\left(h^{l}(X, \xi), \xi\right)=0, \quad A_{\xi}^{*} \xi=0 . \tag{2.16}
\end{gather*}
$$

It is important to note that in general ∇ is not a metric connection. Since $\bar{\nabla}$ is metric connection, by using (2.7), we get

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)=\bar{g}\left(h^{l}(X, Y), Z\right)+\bar{g}\left(h^{l}(X, Z), Y\right) . \tag{2.17}
\end{equation*}
$$

A semi-Riemannian manifold (\bar{M}, \bar{g}) is called an ϵ-almost contact metric manifold [12] if there exists a $(1,1)$ tensor field ϕ, a vector field V called characteristic vector field and a 1-form η, satisfying

$$
\begin{gather*}
\phi^{2} X=-X+\eta(X) V, \quad \eta(V)=\epsilon, \quad \eta \circ \phi=0, \quad \phi V=0, \tag{2.18}\\
\bar{g}(\phi X, \phi Y)=\bar{g}(X, Y)-\epsilon \eta(X) \eta(Y), \tag{2.19}
\end{gather*}
$$

for all $X, Y \in \Gamma(T \bar{M})$, where $\epsilon=1$ or -1 . It follows that

$$
\begin{gather*}
\bar{g}(V, V)=\epsilon \tag{2.20}\\
\bar{g}(X, V)=\eta(X), \tag{2.21}\\
\bar{g}(X, \phi Y)=-\bar{g}(\phi X, Y), \quad \forall X, Y \in \Gamma(T \bar{M}) . \tag{2.22}
\end{gather*}
$$

Then (ϕ, V, η, \bar{g}) is called an ϵ-almost contact metric structure on \bar{M}.
An ϵ-almost contact metric structure (ϕ, V, η, \bar{g}) is called an indefinite Sasakian structure iff

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) Y=\bar{g}(X, Y) V-\epsilon \eta(Y) X \tag{2.23}
\end{equation*}
$$

for all $X, Y \in \Gamma(T \bar{M})$, where $\bar{\nabla}$ is Levi-Civita connection with respect to \bar{g}.
A semi-Riemannian manifold endowed with an indefinite Sasakian structure is called an indefinite Sasakian manifold. From (2.23), for any $X \in \Gamma(T \bar{M})$, we get

$$
\begin{equation*}
\bar{\nabla}_{X} V=-\phi X \tag{2.24}
\end{equation*}
$$

Let $(\bar{M}, \bar{g}, \phi, V, \eta)$ be an ϵ-almost contact metric manifold. If $\epsilon=1$, then \bar{M} is said to be a spacelike ϵ-almost contact metric manifold and if $\epsilon=-1$, then \bar{M} is called a timelike ϵ-almost contact metric manifold. In this paper, we consider indefinite Sasakian manifolds with spacelike characteristic vector field V.

3. Semi-Slant Lightlike Submanifolds

In this section, we introduce the notion of semi-slant lightlike submanifolds of indefinite Sasakian manifolds. At first, we state the following Lemmas for later use:
Lemma 3.1 Let M be a r-lightlike submanifold of an indefinite Sasakian manifold \bar{M} of index $2 q$ with structure vector field tangent to M. Suppose that $\phi R a d T M$ is
a distribution on M such that RadTM $\cap \phi \operatorname{RadTM}=\{0\}$. Then $\phi \operatorname{ltr}(T M)$ is a subbundle of the screen distribution $S(T M)$ and $\phi \operatorname{RadTM} \cap \phi \operatorname{trr}(T M)=\{0\}$.
Lemma 3.2 Let M be a q-lightlike submanifold of an indefinite Sasakian manifold \bar{M} of index $2 q$ with structure vector field tangent to M. Suppose $\phi R a d T M$ is a distribution on M such that RadTM $\cap \phi \operatorname{RadTM}=\{0\}$. Then any complementary distribution to $\phi \operatorname{RadTM} \oplus \phi \operatorname{ltr}(T M)$ in $S(T M)$ is Riemannian.

The proofs of Lemma 3.1 and Lemma 3.2 follow as in Lemma 3.1 and Lemma 3.2 respectively of [4], so we omit them.

Definition 3.1 Let M be a q-lightlike submanifold of an indefinite Sasakian manifold \bar{M} of index $2 q$ such that $2 q<\operatorname{dim}(M)$ with structure vector field tangent to M. Then we say that M is a semi-slant lightlike submanifold of \bar{M} if the following conditions are satisfied:
(i) $\phi \operatorname{RadTM}$ is a distribution on M such that $\operatorname{RadTM} \cap \phi \operatorname{RadTM}=\{0\}$,
(ii) there exist non-degenerate orthogonal distributions D_{1} and D_{2} on M such that $S(T M)=(\phi R a d T M \oplus \phi l t r(T M)) \oplus_{\text {orth }} D_{1} \oplus_{\text {orth }} D_{2} \oplus_{\text {orth }}\{V\}$,
(iii) the distribution D_{1} is an invariant distribution, i.e. $\phi D_{1}=D_{1}$,
(iv) the distribution D_{2} is slant with angle $\theta(\neq 0)$, i.e. for each $x \in M$ and each non-zero vector $X \in\left(D_{2}\right)_{x}$, the angle θ between ϕX and the vector subspace $\left(D_{2}\right)_{x}$ is a non-zero constant, which is independent of the choice of $x \in M$ and $X \in\left(D_{2}\right)_{x}$.
This constant angle θ is called the slant angle of distribution D_{2}. A semi-slant lightlike submanifold is said to be proper if $D_{1} \neq\{0\}, D_{2} \neq\{0\}$ and $\theta \neq \frac{\pi}{2}$.
From the above definition, we have the following decomposition
(3.1) $T M=\operatorname{RadTM} \oplus_{\text {orth }}(\phi \operatorname{RadTM} \oplus \phi l t r(T M)) \oplus_{\text {orth }} D_{1} \oplus_{\text {orth }} D_{2} \oplus_{\text {orth }}\{V\}$.

In particular, we have
(i) if $D_{1}=0$, then M is a slant lightlike submanifold,
(ii) if $D_{1} \neq 0$ and $\theta=\pi / 2$, then M is a contact CR-lightlike submanifold.

Thus the above new class of lightlike submanifolds of an indefinite Sasakian manifold includes slant, contact Cauchy-Riemann lightlike submanifolds as its subcases which have been studied in ([4], [13]).
Let $\left(R_{2 q}^{2 m+1}, \bar{g}, \phi, \eta, V\right)$ denote the manifold $R_{2 q}^{2 m+1}$ with its usual Sasakian structure given by

$$
\begin{aligned}
& \eta=\frac{1}{2}\left(d z-\sum_{i=1}^{m} y^{i} d x^{i}\right), \quad V=2 \partial z, \\
& \bar{g}=\eta \otimes \eta+\frac{1}{4}\left(-\sum_{i=1}^{q} d x^{i} \otimes d x^{i}+d y^{i} \otimes d y^{i}+\sum_{i=q+1}^{m} d x^{i} \otimes d x^{i}+d y^{i} \otimes d y^{i}\right), \\
& \phi\left(\sum_{i=1}^{m}\left(X_{i} \partial x_{i}+Y_{i} \partial y_{i}\right)+Z \partial z\right)=\sum_{i=1}^{m}\left(Y_{i} \partial x_{i}-X_{i} \partial y_{i}\right)+\sum_{i=1}^{m} Y_{i} y^{i} \partial z,
\end{aligned}
$$

where $\left(x^{i}, y^{i}, z\right)$ are the cartesian coordinates on $R_{2 q}^{2 m+1}$. Now we construct some examples of semi-slant lightlike submanifolds of an indefinite Sasakian manifold.

Example 1. Let $\left(R_{2}^{13}, \bar{g}, \phi, \eta, V\right)$ be an indefinite Sasakian manifold, where \bar{g} is of signature $(-,+,+,+,+,+,-,+,+,+,+,+,+)$ with respect to the canonical basis $\left\{\partial x_{1}, \partial x_{2}, \partial x_{3}, \partial x_{4}, \partial x_{5}, \partial x_{6}, \partial y_{1}, \partial y_{2}, \partial y_{3}, \partial y_{4}, \partial y_{5}, \partial y_{6}, \partial z\right\}$.
Suppose M is a submanifold of R_{2}^{13} given by $-x^{1}=y^{2}=u_{1}, x^{2}=u_{2}, y^{1}=u_{3}$, $x^{3}=-y^{4}=u_{4}, x^{4}=y^{3}=u_{5}, x^{5}=u_{6} \sin u_{7}, y^{5}=u_{6} \cos u_{7}, x^{6}=\sin u_{6}$, $y^{6}=\cos u_{6}, z=u_{8}$.

The local frame of $T M$ is given by $\left\{Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}, Z_{6}, Z_{7}, Z_{8}\right\}$, where
$Z_{1}=2\left(-\partial x_{1}+\partial y_{2}-y^{1} \partial z\right), Z_{2}=2\left(\partial x_{2}+y^{2} \partial z\right), Z_{3}=2 \partial y_{1}$,
$Z_{4}=2\left(\partial x_{3}-\partial y_{4}+y^{3} \partial z\right), Z_{5}=2\left(\partial x_{4}+\partial y_{3}+y^{4} \partial z\right)$,
$Z_{6}=2\left(\sin u_{7} \partial x_{5}+\cos u_{7} \partial y_{5}+\cos u_{6} \partial x_{6}-\sin u_{6} \partial y_{6}+\sin u_{7} y^{5} \partial z+\cos u_{6} y^{6} \partial z\right)$,
$Z_{7}=2\left(u_{6} \cos u_{7} \partial x_{5}-u_{6} \sin u_{7} \partial y_{5}+u_{6} \cos u_{7} y^{5} \partial z\right), Z_{8}=V=2 \partial z$.
Hence $R a d T M=\operatorname{span}\left\{Z_{1}\right\}$ and $S(T M)=\operatorname{span}\left\{Z_{2}, Z_{3}, Z_{4}, Z_{5}, Z_{6}, Z_{7}, V\right\}$.
Now $l \operatorname{tr}(T M)$ is spanned by $N=\partial x_{1}+\partial y_{2}+y^{1} \partial z$ and $S\left(T M^{\perp}\right)$ is spanned by $W_{1}=2\left(\partial x_{3}+\partial y_{4}+y^{3} \partial z\right), W_{2}=2\left(\partial x_{4}-\partial y_{3}+y^{4} \partial z\right)$,
$W_{3}=2\left(\sin u_{7} \partial x_{5}+\cos u_{7} \partial y_{5}-\cos u_{6} \partial x_{6}+\sin u_{6} \partial y_{6}+\sin u_{7} y^{5} \partial z-\cos u_{6} y^{6} \partial z\right)$,
$W_{4}=2\left(u_{6} \sin u_{6} \partial x_{6}+u_{6} \cos u_{6} \partial y_{6}+u_{6} \sin u_{6} y^{6} \partial z\right)$.
It follows that $\phi Z_{1}=Z_{2}+Z_{3}$ and $\phi N=1 / 2\left(Z_{2}-Z_{3}\right)$, which implies that $\phi \operatorname{RadTM}$ and $\phi \operatorname{ltr}(T M)$ are distributions on M. On the other hand, we can see that $D_{1}=\operatorname{span}\left\{Z_{4}, Z_{5}\right\}$ such that $\phi Z_{4}=-Z_{5}, \phi Z_{5}=Z_{4}$, which implies that D_{1} is invariant with respect to ϕ and $D_{2}=\operatorname{span}\left\{Z_{6}, Z_{7}\right\}$ is a slant distribution with slant angle $\frac{\pi}{4}$. Hence M is a semi-slant 2-lightlike submanifold of R_{2}^{13}.

Example 2. Let $\left(R_{2}^{13}, \bar{g}, \phi, \eta, V\right)$ be an indefinite Sasakian manifold, where \bar{g} is of signature $(-,+,+,+,+,+,-,+,+,+,+,+,+)$ with respect to the canonical basis $\left\{\partial x_{1}, \partial x_{2}, \partial x_{3}, \partial x_{4}, \partial x_{5}, \partial x_{6}, \partial y_{1}, \partial y_{2}, \partial y_{3}, \partial y_{4}, \partial y_{5}, \partial y_{6}, \partial z\right\}$.
Suppose M is a submanifold of R_{2}^{13} given by $x^{1}=y^{2}=u_{1}, x^{2}=u_{2}, y^{1}=u_{3}, x^{3}=$ $y^{4}=u_{4}, x^{4}=-y^{3}=u_{5}, x^{5}=u_{6} \cos \theta, y^{5}=u_{7} \cos \theta, x^{6}=u_{7} \sin \theta, y^{6}=u_{6} \sin \theta$, $z=u_{8}$.

The local frame of $T M$ is given by $\left\{Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}, Z_{6}, Z_{7}, Z_{8}\right\}$, where
$Z_{1}=2\left(\partial x_{1}+\partial y_{2}+y^{1} \partial z\right), Z_{2}=2\left(\partial x_{2}+y^{2} \partial z\right), Z_{3}=2 \partial y_{1}$,
$Z_{4}=2\left(\partial x_{3}+\partial y_{4}+y^{3} \partial z\right), Z_{5}=2\left(\partial x_{4}-\partial y_{3}+y^{4} \partial z\right)$,
$Z_{6}=2\left(\cos \theta \partial x_{5}+\sin \theta \partial y_{6}+y^{5} \cos \theta \partial z\right)$,
$Z_{7}=2\left(\sin \theta \partial x_{6}+\cos \theta \partial y_{5}+y^{6} \sin \theta \partial z\right), Z_{8}=V=2 \partial z$.
Hence $\operatorname{RadTM}=\operatorname{span}\left\{Z_{1}\right\}$ and $S(T M)=\operatorname{span}\left\{Z_{2}, Z_{3}, Z_{4}, Z_{5}, Z_{6}, Z_{7}, V\right\}$.
Now $l \operatorname{tr}(T M)$ is spanned by $N_{1}=-\partial x_{1}+\partial y_{2}-y^{1} \partial z$ and $S\left(T M^{\perp}\right)$ is spanned by $W_{1}=2\left(\partial x_{3}-\partial y_{4}+y^{3} \partial z\right), W_{2}=2\left(\partial x_{4}+\partial y_{3}+y^{4} \partial z\right)$,
$W_{3}=2\left(\sin \theta \partial x_{5}-\cos \theta \partial y_{6}+y^{5} \sin \theta \partial z\right)$,
$W_{4}=2\left(\cos \theta \partial x_{6}-\sin \theta \partial y_{5}+y^{6} \cos \theta \partial z\right)$.
It follows that $\phi Z_{1}=Z_{2}-Z_{3}$ and $\phi N=1 / 2\left(Z_{2}+Z_{3}\right)$, which implies that $\phi \operatorname{RadTM}$ and $\phi \operatorname{ltr}(T M)$ are distributions on M. On the other hand, we can see that $D_{1}=\operatorname{span}\left\{Z_{4}, Z_{5}\right\}$ such that $\phi Z_{4}=Z_{5}, \phi Z_{5}=-Z_{4}$, which implies that D_{1} is invariant with respect to ϕ and $D_{2}=\operatorname{span}\left\{Z_{6}, Z_{7}\right\}$ is a slant distribution with slant angle 2θ. Hence M is a semi-slant 2-lightlike submanifold of R_{2}^{13}.

Now, for any vector field X tangent to M, we put $\phi X=P X+F X$, where $P X$ and $F X$ are tangential and transversal parts of ϕX respectively. We denote the projections on RadTM, $\phi \operatorname{RadTM}, \phi l t r(T M), D_{1}$ and D_{2} in $T M$ by $P_{1}, P_{2}, P_{3}, P_{4}$, and P_{5} respectively. Similarly, we denote the projections of $\operatorname{tr}(T M)$ on $\operatorname{ltr}(T M)$ and $S\left(T M^{\perp}\right)$ by Q_{1} and Q_{2} respectively. Then, for any $X \in \Gamma(T M)$, we get

$$
\begin{equation*}
X=P_{1} X+P_{2} X+P_{3} X+P_{4} X+P_{5} X+\eta(X) V \tag{3.2}
\end{equation*}
$$

Now applying ϕ to (3.2), we have

$$
\begin{equation*}
\phi X=\phi P_{1} X+\phi P_{2} X+\phi P_{3} X+\phi P_{4} X+\phi P_{5} X \tag{3.3}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\phi X=\phi P_{1} X+\phi P_{2} X+\phi P_{3} X+\phi P_{4} X+f P_{5} X+F P_{5} X \tag{3.4}
\end{equation*}
$$

where $f P_{5} X$ (resp. $F P_{5} X$) denotes the tangential (resp. transversal) component of $\phi P_{5} X$. Thus we get $\phi P_{1} X \in \Gamma(\phi R a d T M), \phi P_{2} X \in \Gamma(\operatorname{RadTM}), \phi P_{3} X \in$ $\Gamma(l \operatorname{tr}(T M)), \phi P_{4} X \in \Gamma\left(D_{1}\right), f P_{5} X \in \Gamma\left(D_{2}\right)$ and $F P_{5} X \in \Gamma\left(S\left(T M^{\perp}\right)\right)$. Also, for any $W \in \Gamma(\operatorname{tr}(T M))$, we have

$$
\begin{equation*}
W=Q_{1} W+Q_{2} W \tag{3.5}
\end{equation*}
$$

Applying ϕ to (3.5), we obtain

$$
\begin{equation*}
\phi W=\phi Q_{1} W+\phi Q_{2} W \tag{3.6}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\phi W=\phi Q_{1} W+B Q_{2} W+C Q_{2} W \tag{3.7}
\end{equation*}
$$

where $B Q_{2} W$ (resp. $C Q_{2} W$) denotes the tangential (resp. transversal) component of $\phi Q_{2} W$. Thus we get $\phi Q_{1} W \in \Gamma(\phi \operatorname{ltr}(T M)), B Q_{2} W \in \Gamma\left(D_{2}\right)$ and $C Q_{2} W \in$ $\Gamma\left(S\left(T M^{\perp}\right)\right)$.
Now, by using (2.23), (3.4), (3.7) and (2.7)-(2.9) and identifying the components on $\operatorname{RadTM}, \phi \operatorname{RadTM}, \phi \operatorname{ltr}(T M), D_{1}, D_{2}, \operatorname{ltr}(T M), S\left(T M^{\perp}\right)$ and $\{V\}$, we obtain

$$
\begin{align*}
& P_{1}\left(\nabla_{X} \phi P_{1} Y\right)+P_{1}\left(\nabla_{X} \phi P_{2} Y\right)+P_{1}\left(\nabla_{X} \phi P_{4} Y\right)+P_{1}\left(\nabla_{X} f P_{5} Y\right) \tag{3.8}\\
& =P_{1}\left(A_{F P_{5} Y} X\right)+P_{1}\left(A_{\phi P_{3} Y} X\right)+\phi P_{2} \nabla_{X} Y-\eta(Y) P_{1} X, \\
& P_{2}\left(\nabla_{X} \phi P_{1} Y\right)+P_{2}\left(\nabla_{X} \phi P_{2} Y\right)+P_{2}\left(\nabla_{X} \phi P_{4} Y\right)+P_{2}\left(\nabla_{X} f P_{5} Y\right) \tag{3.9}\\
& =P_{2}\left(A_{F P_{5} Y} X\right)+P_{2}\left(A_{\phi P_{3} Y} X\right)+\phi P_{1} \nabla_{X} Y-\eta(Y) P_{2} X, \\
& P_{3}\left(\nabla_{X} \phi P_{1} Y\right)+P_{3}\left(\nabla_{X} \phi P_{2} Y\right)+P_{3}\left(\nabla_{X} \phi P_{4} Y\right)+P_{3}\left(\nabla_{X} f P_{5} Y\right) \tag{3.10}\\
& =P_{3}\left(A_{F P_{5} Y} X\right)+P_{3}\left(A_{\phi P_{3} Y} X\right)+\phi h^{l}(X, Y)-\eta(Y) P_{3} X, \\
& P_{4}\left(\nabla_{X} \phi P_{1} Y\right)+P_{4}\left(\nabla_{X} \phi P_{2} Y\right)+P_{4}\left(\nabla_{X} \phi P_{4} Y\right)+P_{4}\left(\nabla_{X} f P_{5} Y\right) \tag{3.11}\\
& =P_{4}\left(A_{F P_{5} Y} X\right)+P_{4}\left(A_{\phi P_{3} Y} X\right)+\phi P_{4} \nabla_{X} Y-\eta(Y) P_{4} X,
\end{align*}
$$

$$
\begin{align*}
& P_{5}\left(\nabla_{X} \phi P_{1} Y\right)+P_{5}\left(\nabla_{X} \phi P_{2} Y\right)+P_{5}\left(\nabla_{X} \phi P_{4} Y\right)+P_{5}\left(\nabla_{X} f P_{5} Y\right) \tag{3.12}\\
& =P_{5}\left(A_{F P_{5} Y} X\right)+P_{5}\left(A_{\phi P_{3} Y} X\right)+f P_{5} \nabla_{X} Y+B h^{s}(X, Y)-\eta(Y) P_{5} X, \\
& \quad h^{l}\left(X, \phi P_{1} Y\right)+h^{l}\left(X, \phi P_{2} Y\right)+h^{l}\left(X, \phi P_{4} Y\right)+h^{l}\left(X, f P_{5} Y\right) \tag{3.13}\\
& \quad=\phi P_{3} \nabla_{X} Y-\nabla_{X}^{l} \phi P_{3} Y-D^{l}\left(X, F P_{5} Y\right), \\
& \quad h^{s}\left(X, \phi P_{1} Y\right)+h^{s}\left(X, \phi P_{2} Y\right)+h^{s}\left(X, \phi P_{4} Y\right)+h^{s}\left(X, f P_{5} Y\right) \tag{3.14}\\
& \quad=C h^{s}(X, Y)-\nabla_{X}^{s} F P_{5} Y-D^{s}\left(X, \phi P_{3} Y\right)+F P_{5} \nabla_{X} Y, \\
& \eta\left(\nabla_{X} \phi P_{1} Y\right)+\eta\left(\nabla_{X} \phi P_{2} Y\right)+\eta\left(\nabla_{X} \phi P_{4} Y\right)+\eta\left(\nabla_{X} f P_{5} Y\right) \tag{3.15}\\
& \quad=\eta\left(A_{\phi P_{3} Y} X\right)+\eta\left(A_{F P_{5} Y} X\right)+\bar{g}(X, Y) V .
\end{align*}
$$

Theorem 3.3 Let M be a q-lightlike submanifold of an indefinite Sasakian manifold \bar{M} of index $2 q$ with structure vector field tangent to M. Then M is a semi-slant lightlike submanifold if and only if
(i) $\phi \operatorname{RadTM}$ is a distribution on M such that RadTM $\cap \phi \operatorname{RadTM}=\{0\}$,
(ii) the distribution D_{1} is an invariant distribution, i.e. $\phi D_{1}=D_{1}$,
(iii) there exists a constant $\lambda \in[0,1)$ such that $P^{2} X=-\lambda X$.

Moreover, there also exists a constant $\mu \in(0,1]$ such that $B F X=-\mu X$, for all $X \in \Gamma\left(D_{2}\right)$, where D_{1} and D_{2} are non-degenerate orthogonal distributions on M such that $S(T M)=(\phi \operatorname{RadTM} \oplus \phi l \operatorname{tr}(T M)) \oplus_{\text {orth }} D_{1} \oplus_{\text {orth }} D_{2} \oplus_{\text {orth }}\{V\}$ and $\lambda=\cos ^{2} \theta, \theta$ is slant angle of D_{2}.
Proof. Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Then distribution D_{1} is invariant with respect to ϕ and $\phi R a d T M$ is a distribution on M such that $\operatorname{RadTM} \cap \phi R a d T M=\{0\}$.

Now for any $X \in \Gamma\left(D_{2}\right)$ we have $|P X|=|\phi X| \cos \theta$, which implies

$$
\begin{equation*}
\cos \theta=\frac{|P X|}{|\phi X|} \tag{3.16}
\end{equation*}
$$

In view of (3.16), we get $\cos ^{2} \theta=\frac{|P X|^{2}}{|\phi X|^{2}}=\frac{g(P X, P X)}{g(\phi X, \phi X)}=\frac{g\left(X, P^{2} X\right)}{g\left(X, \phi^{2} X\right)}$, which gives

$$
\begin{equation*}
g\left(X, P^{2} X\right)=\cos ^{2} \theta g\left(X, \phi^{2} X\right) \tag{3.17}
\end{equation*}
$$

Since M is semi-slant lightlike submanifold, $\cos ^{2} \theta=\lambda($ constant $) \in[0,1)$ and therefore from (3.17), we get $g\left(X, P^{2} X\right)=\lambda g\left(X, \phi^{2} X\right)=g\left(X, \lambda \phi^{2} X\right)$, which implies

$$
\begin{equation*}
g\left(X,\left(P^{2}-\lambda \phi^{2}\right) X\right)=0 \tag{3.18}
\end{equation*}
$$

Since $\left(P^{2}-\lambda \phi^{2}\right) X \in \Gamma\left(D_{2}\right)$ and the induced metric $g=\left.g\right|_{D_{2} \times D_{2}}$ is nondegenerate(positive definite), from (3.18), we have $\left(P^{2}-\lambda \phi^{2}\right) X=0$, which implies

$$
\begin{equation*}
P^{2} X=\lambda \phi^{2} X=-\lambda X \tag{3.19}
\end{equation*}
$$

Now, for any vector field $X \in \Gamma\left(D_{2}\right)$, we have

$$
\begin{equation*}
\phi X=P X+F X \tag{3.20}
\end{equation*}
$$

where $P X$ and $F X$ are tangential and transversal parts of ϕX respectively. Applying ϕ to (3.20) and taking tangential component, we get

$$
\begin{equation*}
-X=P^{2} X+B F X \tag{3.21}
\end{equation*}
$$

From (3.19) and (3.21), we get

$$
\begin{equation*}
B F X=-\mu X \tag{3.22}
\end{equation*}
$$

where $1-\lambda=\mu($ constant $) \in(0,1]$.
This proves (iii).
Conversely suppose that conditions (i), (ii) and (iii) are satisfied. From (3.21), for any $X \in \Gamma\left(D_{2}\right)$, we get

$$
\begin{equation*}
-X=P^{2} X-\mu X \tag{3.23}
\end{equation*}
$$

which implies

$$
\begin{equation*}
P^{2} X=-\lambda X \tag{3.24}
\end{equation*}
$$

where $1-\mu=\lambda($ constant $) \in[0,1)$.
Now $\cos \theta=\frac{g(\phi X, P X)}{|\phi X||P X|}=-\frac{g(X, \phi P X)}{|\phi X||P X|}=-\frac{g\left(X, P^{2} X\right)}{|\phi X||P X|}=-\lambda \frac{g\left(X, \phi^{2} X\right)}{|\phi X||P X|}=\lambda \frac{g(\phi X, \phi X)}{|\phi X||P X|}$.
From above equation, we get

$$
\begin{equation*}
\cos \theta=\lambda \frac{|\phi X|}{|P X|} \tag{3.25}
\end{equation*}
$$

Therefore (3.16) and (3.25) give $\cos ^{2} \theta=\lambda$ (constant).
Hence M is a semi-slant lightlike submanifold.
Corollary 3.1 Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with slant angle θ, then for any $X, Y \in \Gamma\left(D_{2}\right)$, we have
(i) $g(P X, P Y)=\cos ^{2} \theta(g(X, Y)-\eta(X) \eta(Y))$,
(ii) $g(F X, F Y)=\sin ^{2} \theta(g(X, Y)-\eta(X) \eta(Y))$.

The proof of above Corollary follows by using similar steps as in proof of Corollary 3.2 of [3].

Lemma 3.4 Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Then for any $X, Y \in \Gamma(T M-\{V\})$, we have
(i) $g\left(\nabla_{X} Y, V\right)=\bar{g}(Y, \phi X)$,
(ii) $g([X, Y], V)=2 \bar{g}(X, \phi Y)$.

Proof. Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Since $\bar{\nabla}$ is a metric connection, from (2.7) and (2.24), for any $X, Y \in \Gamma(T M-\{V\})$, we have

$$
\begin{equation*}
g\left(\nabla_{X} Y, V\right)=\bar{g}(Y, \phi X) \tag{3.26}
\end{equation*}
$$

From (2.22) and (3.26), for any $X, Y \in \Gamma(T M-\{V\})$, we have

$$
\begin{equation*}
g([X, Y], V)=2 \bar{g}(X, \phi Y) \tag{3.27}
\end{equation*}
$$

Theorem 3.5 Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field tangent to M. Then RadTM is integrable if and only if
(i) $P_{1}\left(\nabla_{X} \phi P_{1} Y\right)=P_{1}\left(\nabla_{Y} \phi P_{1} X\right), P_{4}\left(\nabla_{X} \phi P_{1} Y\right)=P_{4}\left(\nabla_{Y} \phi P_{1} X\right)$ and $P_{5}\left(\nabla_{X} \phi P_{1} Y\right)=P_{5}\left(\nabla_{Y} \phi P_{1} X\right)$,
(ii) $h^{l}\left(Y, \phi P_{1} X\right)=h^{l}\left(X, \phi P_{1} Y\right)$ and $h^{s}\left(Y, \phi P_{1} X\right)=h^{s}\left(X, \phi P_{1} Y\right)$,
for all $X, Y \in \Gamma(\operatorname{RadTM})$.
Proof. Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Let $X, Y \in \Gamma(\operatorname{RadTM})$. From (3.8), we have $P_{1}\left(\nabla_{X} \phi P_{1} Y\right)=$ $\phi P_{2} \nabla_{X} Y$, which gives $P_{1}\left(\nabla_{X} \phi P_{1} Y\right)-P_{1}\left(\nabla_{Y} \phi P_{1} X\right)=\phi P_{2}[X, Y]$. From (3.11), we get $P_{4}\left(\nabla_{X} \phi P_{1} Y\right)=\phi P_{4} \nabla_{X} Y$, which gives $P_{4}\left(\nabla_{X} \phi P_{1} Y\right)-P_{4}\left(\nabla_{Y} \phi P_{1} X\right)=$ $\phi P_{4}[X, Y]$. From (3.12), we have $P_{5}\left(\nabla_{X} \phi P_{1} Y\right)=f P_{5} \nabla_{X} Y+B h^{s}(X, Y)$, which gives $P_{5}\left(\nabla_{X} \phi P_{1} Y\right)-P_{5}\left(\nabla_{Y} \phi P_{1} X\right)=f P_{5}[X, Y]$. In view of (3.13), we obtain $h^{l}\left(X, \phi P_{1} Y\right)=\phi P_{3} \nabla_{X} Y$, which implies $h^{l}\left(X, \phi P_{1} Y\right)-h^{l}\left(Y, \phi P_{1} X\right)=\phi P_{3}[X, Y]$. Also from (3.14), we get $h^{s}\left(X, \phi P_{1} Y\right)=C h^{s}(X, Y)+F P_{5} \nabla_{X} Y$, which gives $h^{s}\left(X, \phi P_{1} Y\right)-h^{s}\left(Y, \phi P_{1} X\right)=F P_{5}[X, Y]$. This proves the theorem.
Theorem 3.6 Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field tangent to M. Then $D_{1} \oplus\{V\}$ is integrable if and only if
(i) $P_{1}\left(\nabla_{X} \phi P_{4} Y\right)=P_{1}\left(\nabla_{Y} \phi P_{4} X\right), P_{2}\left(\nabla_{X} \phi P_{4} Y\right)=P_{2}\left(\nabla_{Y} \phi P_{4} X\right)$ and $P_{5}\left(\nabla_{X} \phi P_{4} Y\right)=P_{5}\left(\nabla_{Y} \phi P_{4} X\right)$,
(ii) $h^{l}\left(Y, \phi P_{4} X\right)=h^{l}\left(X, \phi P_{4} Y\right)$ and $h^{s}\left(Y, \phi P_{4} X\right)=h^{s}\left(X, \phi P_{4} Y\right)$, for all $X, Y \in \Gamma\left(D_{1} \oplus\{V\}\right)$.

Proof. Let M be semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Let $X, Y \in \Gamma\left(D_{1} \oplus\{V\}\right)$. From (3.8), we have $P_{1}\left(\nabla_{X} \phi P_{4} Y\right)=$ $\phi P_{2} \nabla_{X} Y$, which gives $P_{1}\left(\nabla_{X} \phi P_{4} Y\right)-P_{1}\left(\nabla_{Y} \phi P_{4} X\right)=\phi P_{2}[X, Y]$. From (3.9), we get $P_{2}\left(\nabla_{X} \phi P_{4} Y\right)=\phi P_{1} \nabla_{X} Y$, which gives $P_{2}\left(\nabla_{X} \phi P_{4} Y\right)-P_{2}\left(\nabla_{Y} \phi P_{4} X\right)=$ $\phi P_{1}[X, Y]$. From (3.12), we have $P_{5}\left(\nabla_{X} \phi P_{4} Y\right)=f P_{5} \nabla_{X} Y+B h^{s}(X, Y)$, which gives $P_{5}\left(\nabla_{X} \phi P_{4} Y\right)-P_{5}\left(\nabla_{Y} \phi P_{4} X\right)=f P_{5}[X, Y]$. In view of (3.13), we obtain
$h^{l}\left(X, \phi P_{4} Y\right)=\phi P_{3} \nabla_{X} Y$, which implies $h^{l}\left(X, \phi P_{4} Y\right)-h^{l}\left(Y, \phi P_{4} X\right)=\phi P_{3}[X, Y]$. Also from (3.14), we get $h^{s}\left(X, \phi P_{4} Y\right)=C h^{s}(X, Y)+F P_{5} \nabla_{X} Y$, which gives $h^{s}\left(X, \phi P_{4} Y\right)-h^{s}\left(Y, \phi P_{4} X\right)=F P_{5}[X, Y]$. This concludes the theorem.
Theorem 3.7 Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field tangent to M. Then $D_{2} \oplus\{V\}$ is integrable if and only if
(i) $P_{1}\left(\nabla_{X} f P_{5} Y-\nabla_{Y} f P_{5} X\right)=P_{1}\left(A_{F P_{5} Y} X-A_{F P_{5} X} Y\right)$,
(ii) $P_{2}\left(\nabla_{X} f P_{5} Y-\nabla_{Y} f P_{5} X\right)=P_{2}\left(A_{F P_{5} Y} X-A_{F P_{5} X} Y\right)$,
(iii) $P_{4}\left(\nabla_{X} f P_{5} Y-\nabla_{Y} f P_{5} X\right)=P_{4}\left(A_{F P_{5} Y} X-A_{F P_{5} X} Y\right)$,
(iv) $h^{l}\left(X, f P_{5} Y\right)-h^{l}\left(Y, f P_{5} X\right)=D^{l}\left(Y, F P_{5} X\right)-D^{l}\left(X, F P_{5} Y\right)$,
for all $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$.
Proof. Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Let $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$. From (3.8), we have $P_{1}\left(\nabla_{X} f P_{5} Y\right)$ $P_{1}\left(A_{F P_{5} Y} X\right)=\phi P_{2} \nabla_{X} Y$, which gives $P_{1}\left(\nabla_{X} f P_{5} Y-\nabla_{Y} f P_{5} X\right)-P_{1}\left(A_{F P_{5} Y} X-\right.$ $\left.A_{F P_{5} X} Y\right)=\phi P_{2}[X, Y]$. From (3.9), we get $P_{2}\left(\nabla_{X} f P_{5} Y\right)-P_{2}\left(A_{F P_{5} Y} X\right)=$ $\phi P_{1} \nabla_{X} Y$, which gives $P_{2}\left(\nabla_{X} f P_{5} Y-\nabla_{Y} f P_{5} X\right)-P_{2}\left(A_{F P_{5} Y} X-A_{F P_{5} X} Y\right)=$ $\phi P_{1}[X, Y]$. In view of (3.11), we obtain $P_{4}\left(\nabla_{X} f P_{5} Y\right)-P_{4}\left(A_{F P_{5} Y} X\right)=\phi P_{4} \nabla_{X} Y$, which implies
$P_{4}\left(\nabla_{X} f P_{5} Y-\nabla_{Y} f P_{5} X\right)-P_{4}\left(A_{F P_{5} Y} X-A_{F P_{5} X} Y\right)=\phi P_{4}[X, Y]$. Also from (3.13), we get $h^{l}\left(X, f P_{5} Y\right)+D^{l}\left(X, F P_{5} Y\right)=\phi P_{3} \nabla_{X} Y$, which gives $h^{l}\left(X, f P_{5} Y\right)-$ $h^{l}\left(Y, f P_{5} X\right)+D^{l}\left(X, F P_{5} Y\right)-D^{l}\left(Y, F P_{5} X\right)=\phi P_{3}[X, Y]$. Thus, we obtain the required results.
Theorem 3.8 Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field V tangent to M. Then induced connection ∇ is not a metric connection.
Proof. Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Suppose that the induced connection is a metric connection. Then $\nabla_{X} \phi P_{2} Y \in \Gamma(R a d T M)$ and $h^{l}(X, Y)=0$ for all $X, Y \in \Gamma(T M)$. Thus from (2.23), for any $Z \in \Gamma(\phi R a d T M)$ and $W \in \Gamma(\phi \operatorname{ltr}(T M))$, we have

$$
\begin{equation*}
\bar{\nabla}_{W} \phi Z-\phi \bar{\nabla}_{W} Z=\bar{g}(Z, W) V . \tag{3.28}
\end{equation*}
$$

From (2.7), (3.28) and taking tangential components, we obtain

$$
\begin{align*}
& \nabla_{W} \phi Z-\phi P_{1} \nabla_{W} Z-\phi P_{2} \nabla_{W} Z-\phi P_{4} \nabla_{W} Z \tag{3.29}\\
& =f P_{5} \nabla_{W} Z+B h^{s}(Z, W)+\bar{g}(Z, W) V
\end{align*}
$$

Since $T M=\operatorname{RadTM} \oplus_{\text {orth }}(\phi \operatorname{RadTM} \oplus \phi l t r(T M)) \oplus_{\text {orth }} D_{1} \oplus_{\text {orth }} D_{2} \oplus_{\text {orth }}\{V\}$, from (3.29), we get

$$
\begin{equation*}
\nabla_{W} \phi Z-\phi P_{2} \nabla_{W} Z=0, \phi P_{1} \nabla_{W} Z=0, \phi P_{4} \nabla_{W} Z=0 \tag{3.30}
\end{equation*}
$$

$$
\begin{equation*}
f P_{5} \nabla_{W} Z-B h^{s}(Z, W)=0, \quad \bar{g}(Z, W) V=0 \tag{3.31}
\end{equation*}
$$

Now taking $W=\phi N$ and $Z=\phi \xi$ in (3.31), we get $\bar{g}(N, \xi) V=0$. Thus $V=0$, which is a contradiction. Hence M does not have a metric connection.

4. Foliations Determined by Distributions

In this section, we obtain necessary and sufficient conditions for foliations determined by distributions on a semi-slant lightlike submanifold of an indefinite Sasakian manifold to be totally geodesic.
Definition 4.1. A semi-slant lightlike submanifold M of an indefinite Sasakian manifold \bar{M} is said to be mixed geodesic if its second fundamental form h satisfies $h(X, Y)=0$, for all $X \in \Gamma\left(D_{1}\right)$ and $Y \in \Gamma\left(D_{2}\right)$. Thus M is mixed geodesic semislant lightlike submanifold if $h^{l}(X, Y)=0$ and $h^{s}(X, Y)=0$, for all $X \in \Gamma\left(D_{1}\right)$ and $Y \in \Gamma\left(D_{2}\right)$.

Theorem 4.1 Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field tangent to M. Then RadTM defines a totally geodesic foliation if and only if $\bar{g}\left(\nabla_{X} \phi P_{2} Z+\nabla_{X} \phi P_{4} Z+\nabla_{X} f P_{5} Z, \phi Y\right)=$ $\bar{g}\left(A_{\phi P_{3} Z} X+A_{F P_{5} Z} X, \phi Y\right)$, for all $X, Y \in \Gamma(R a d T M)$ and $Z \in \Gamma(S(T M))$.
Proof. Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. To prove RadTM defines a totally geodesic foliation it is sufficient to show that $\nabla_{X} Y \in \Gamma(\operatorname{RadTM})$, for all $X, Y \in \Gamma(\operatorname{RadTM})$. Since $\bar{\nabla}$ is metric connection, using (2.7), (2.19), (2.23) and (3.4), for any $X, Y \in \Gamma(R a d T M)$ and $Z \in \Gamma(S(T M))$, we get $\bar{g}\left(\nabla_{X} Y, Z\right)=-\bar{g}\left(\bar{\nabla}_{X}\left(\phi P_{2} Z+\phi P_{3} Z+\phi P_{4} Z+f P_{5} Z+F P_{5} Z\right), \phi Y\right)$, which gives $\bar{g}\left(\nabla_{X} Y, Z\right)=\bar{g}\left(A_{\phi P_{3} Z} X+A_{F P_{5} Z} X-\nabla_{X} \phi P_{2} Z-\nabla_{X} \phi P_{4} Z-\nabla_{X} f P_{5} Z, \phi Y\right)$. Thus, the theorem is completed.
Theorem 4.2 Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field tangent to M. Then $D_{1} \oplus\{V\}$ defines a totally geodesic foliation if and only if
(i) $\bar{g}\left(A_{F Z} X, \phi Y\right)=\bar{g}\left(\nabla_{X} f Z, \phi Y\right)$,
(ii) $A_{\phi W} X$ and $\nabla_{X} \phi N$ have no component in $D_{1} \oplus\{V\}$,
for all $X, Y \in \Gamma\left(D_{1} \oplus\{V\}\right), Z \in \Gamma\left(D_{2}\right), W \in \Gamma(\phi \operatorname{ltr}(T M))$ and $N \in$ $\Gamma(l \operatorname{tr}(T M))$.

Proof. Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. The distribution $D_{1} \oplus\{V\}$ defines a totally geodesic foliation if and only if $\nabla_{X} Y \in \Gamma\left(D_{1} \oplus\{V\}\right)$, for all $X, Y \in \Gamma\left(D_{1} \oplus\{V\}\right)$. Since $\bar{\nabla}$ is metric connection, from (2.7), (2.19) and (2.23), for any $X, Y \in \Gamma\left(D_{1} \oplus\{V\}\right)$ and $Z \in \Gamma\left(D_{2}\right)$, we obtain $\bar{g}\left(\nabla_{X} Y, Z\right)=-\bar{g}\left(\bar{\nabla}_{X} \phi Z, \phi Y\right)$, which gives $\bar{g}\left(\nabla_{X} Y, Z\right)=\bar{g}\left(A_{F Z} X-\nabla_{X} f Z, \phi Y\right)$. In view of (2.7), (2.19) and (2.23), for any $X, Y \in \Gamma\left(D_{1} \oplus\{V\}\right)$ and $N \in$ $\Gamma(l \operatorname{tr}(T M))$, we obtain $\bar{g}\left(\nabla_{X} Y, N\right)=-\bar{g}\left(\phi Y, \bar{\nabla}_{X} \phi N\right)$, which implies $\bar{g}\left(\nabla_{X} Y, N\right)=$ $-\bar{g}\left(\phi Y, \nabla_{X} \phi N\right)$. Now, from (2.7), (2.19) and (2.23), for any $X, Y \in \Gamma\left(D_{1} \oplus\{V\}\right)$
and $W \in \Gamma(\phi l t r(T M))$, we have $\bar{g}\left(\nabla_{X} Y, W\right)=-\bar{g}\left(\phi Y, \bar{\nabla}_{X} \phi W\right)$, which gives $\bar{g}\left(\nabla_{X} Y, W\right)=\bar{g}\left(\phi Y, A_{\phi W} X\right)$. Thus, we obtain the required results.

Theorem 4.3 Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field tangent to M. Then $D_{2} \oplus\{V\}$ defines a totally geodesic foliation if and only if
(i) $\bar{g}\left(\nabla_{X} \phi Z, f Y\right)=-\bar{g}\left(h^{s}(X, \phi Z), F Y\right)$,
(ii) $\bar{g}\left(f Y, \nabla_{X} \phi N\right)=-\bar{g}\left(F Y, h^{s}(X, \phi N)\right)$,
(iii) $\bar{g}\left(f Y, A_{\phi W} X\right)=\bar{g}\left(F Y, D^{s}(X, \phi W)\right)$,
for all $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right), Z \in \Gamma\left(D_{1}\right), N \in \Gamma(l \operatorname{tr}(T M))$ and $W \in$ $\Gamma(\phi \operatorname{ltr}(T M))$.

Proof. Let M be a semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. The distribution $D_{2} \oplus\{V\}$ defines a totally geodesic foliation if and only if $\nabla_{X} Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$, for all $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$. Since $\bar{\nabla}$ is metric connection, from (2.7), (2.19) and (2.23), for any $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$ and $Z \in \Gamma\left(D_{1}\right)$, we obtain $\bar{g}\left(\nabla_{X} Y, Z\right)=-\bar{g}\left(\bar{\nabla}_{X} \phi Z, \phi Y\right)$, which gives $\bar{g}\left(\nabla_{X} Y, Z\right)=$ $-\bar{g}\left(\nabla_{X} \phi Z, f Y\right)-\bar{g}\left(h^{s}(X, \phi Z), F Y\right)$. From (2.7), (2.19) and (2.23), for any $X, Y \in$ $\Gamma\left(D_{2} \oplus\{V\}\right)$ and $N \in \Gamma(l \operatorname{tr}(T M))$, we get $\bar{g}\left(\nabla_{X} Y, N\right)=-\bar{g}\left(\phi Y, \nabla_{X} \phi N\right)$, which gives $\bar{g}\left(\nabla_{X} Y, N\right)=-\bar{g}\left(f Y, \nabla_{X} \phi N\right)-\bar{g}\left(F Y, h^{s}(X, \phi N)\right)$. In view of (2.7), (2.19) and (2.23), for any $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$ and $W \in \Gamma(\phi \operatorname{ltr}(T M))$, we obtain $\bar{g}\left(\nabla_{X} Y, W\right)=$ $-\bar{g}\left(\phi Y, \bar{\nabla}_{X} \phi W\right)$, which implies $\bar{g}\left(\nabla_{X} Y, W\right)=\bar{g}\left(f Y, A_{\phi W} X\right)-\bar{g}\left(F Y, D^{s}(X, \phi W)\right)$. This concludes the theorem.

Theorem 4.4 Let M be a mixed geodesic semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field tangent to M. Then $D_{2} \oplus\{V\}$ defines a totally geodesic foliation if and only if
(i) $\nabla_{X} \phi Z$ has no component in $D_{2} \oplus\{V\}$,
(ii) $\bar{g}\left(f Y, \nabla_{X} \phi N\right)=-\bar{g}\left(F Y, h^{s}(X, \phi N)\right)$,
(iii) $\bar{g}\left(f Y, A_{\phi W} X\right)=\bar{g}\left(F Y, D^{s}(X, \phi W)\right)$,
for all $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right), Z \in \Gamma\left(D_{1}\right), N \in \Gamma(l \operatorname{tr}(T M))$ and $W \in$ $\Gamma(\phi \operatorname{ltr}(T M))$.

Proof. Let M be a mixed geodesic semi-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Then $h(X, Y)=0$, for all $X \in \Gamma\left(D_{1}\right)$ and $Y \in \Gamma\left(D_{2}\right)$. The distribution $D_{2} \oplus\{V\}$ defines a totally geodesic foliation if and only if $\nabla_{X} Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$, for all $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$. Since $\bar{\nabla}$ is metric connection, from (2.7), (2.19) and (2.23), for any $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$ and $Z \in \Gamma\left(D_{1}\right)$, we get $\bar{g}\left(\nabla_{X} Y, Z\right)=-\bar{g}\left(\bar{\nabla}_{X} \phi Z, \phi Y\right)$, which gives $\bar{g}\left(\nabla_{X} Y, Z\right)=-\bar{g}\left(\nabla_{X} \phi Z, f Y\right)-$ $\bar{g}\left(h^{s}(X, \phi Z), F Y\right)$. In view of (2.7), (2.19) and (2.23), for any $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$ and $N \in \Gamma(l \operatorname{tr}(T M))$, we obtain $\bar{g}\left(\nabla_{X} Y, N\right)=-\bar{g}\left(\phi Y, \bar{\nabla}_{X} \phi N\right)$, which implies $\bar{g}\left(\nabla_{X} Y, N\right)=-\bar{g}\left(f Y, \nabla_{X} \phi N\right)-\bar{g}\left(F Y, h^{s}(X, \phi N)\right)$. Now, from (2.7), (2.19) and
(2.23), for any $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$ and $W \in \Gamma(\phi l t r(T M))$, we have $\bar{g}\left(\nabla_{X} Y, W\right)=$ $-\bar{g}\left(\phi Y, \bar{\nabla}_{X} \phi W\right)$, which gives $\bar{g}\left(\nabla_{X} Y, W\right)=\bar{g}\left(f Y, A_{\phi W} X\right)-\bar{g}\left(F Y, D^{s}(X, \phi W)\right)$.
This concludes the theorem.

References

[1] C. L. Bejan and K. L. Duggal, Global Lightlike Manifolds and Harmonicity, Kodai Math. J., 28(2005), 131-145.
[2] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2002.
[3] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez and M. Fernandez, Slant Submanifolds in Sasakian manifolds, Glasgow Math J., 42(2000), 125-138.
[4] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez and M. Fernandez, Semi-slant Submanifolds of a Sasakian manifold, Geometriae Dedicata, 78(1999), 183-199.
[5] B. Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit, Leuven, 1990.
[6] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Vol. 364 of Mathematics and its applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
[7] K. L. Duggal and B. Sahin, Differential Geomety of Lightlike Submanifolds, Birkhauser Verlag AG, Basel, Boston, Berlin, 2010.
[8] K. L. Duggal and B. Sahin, Lightlike Submanifolds of Indefinite Sasakian Manifolds, Int. J. of Math. Math. Sci., Article ID 57585, 2007.
[9] D. L. Johnson and L. B. Whitt, Totally Geodesic Foliations, J. Differential Geometry, 15(1980), 225-235.
[10] A. Lotta, Slant Submanifolds in Contact geometry, Bull. Math. Soc. Roumanie, 39(1996), 183-198.
[11] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press New York, 1983.
[12] B. Sahin, Screen Slant Lightlike Submanifolds, Int. Electronic J. of Geometry, 2(2009), 41-54.
[13] B. Sahin and C. Yildirim, Slant Lightlike Submanifolds of Indefinite Sasakian Manifolds, Faculty of Sci. and Math., Univ. of Nis, Serbia, 2 (2012), 277-287.
[14] S. S. Shukla and A. Yadav, Lightlike submanifolds of indefinite para-Sasakian manifolds, Matematicki Vesnik, 66(4)(2014), 371-386.
[15] S. S. Shukla and A. Yadav, Radical transversal lightlike submanifolds of indefinite para-Sasakian manifolds, Demonstratio Math., 47(4)(2014), 994-1011.

[^0]: * Corresponding Author.

 Received May 1, 2015; revised November 3, 2015; accepted February 5, 2016.
 2010 Mathematics Subject Classification: 53C15; 53C40; 53C50.
 Key words and phrases: Semi-Riemannian manifold, degenerate metric, radical distribution, screen distribution, screen transversal vector bundle, lightlike transversal vector bundle, Gauss and Weingarten formulae.
 This work was supported by Council of Scientific and Industrial Research (C.S.I.R.), India.

