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Abstract. In this paper, we obtain solution for the first order matrix dynamical system

and also we provide set of necessary and sufficient conditions for complete controllability

and complete observability of the Sylvester matrix dynamical system.

1. Introduction

The importance of Sylvester matrix and Lyapunov matrix differential equations
and their occurrence in a number of areas of applied mathematics such as control
systems, dynamic programming, optimal filters, quantum mechanics and systems
engineering etc., are well known. The two main objectives of this paper are therefore
(1) to develop the theory and methods to solve dynamical system on time scales
(2) to explore the techniques of controllability and observability . In this paper we
mainly focus our attention to first order Sylvester matrix dynamical systems of the
form

(1.1) X∆(t) = A(t)X(t) +X(t)B(t) + µ(t)A(t)X(t)B(t) + C(t)U(t)D∗(t),

X(t0) = X0
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(1.2) Y (t) = K(t)X(t)L∗(t),

where X(t) is an n× n matrix, U(t) is m× n input piecewise rd-continuous matrix
called control and Y (t) is r×n output rd-continuous matrix. Here A(t), B(t), C(t)
and K(t) are n × n, n × n, n ×m and r × n rd-continuous matrices respectively.
D(t), L(t) are rd-continuous matrices of order n × n. X∆ is the generalized delta
derivative of X,(Definition 1.10 of [2]) and t is from a time scale T, which is a non-
empty closed subset of R and µ is a graininess function. When B = A∗ (* denotes
the transpose of matrix) equation (1.1) is called matrix Lyapunov dynamical system
on time scales. Many authors [4, 11], were obtained complete controllability and
complete observability criteria for similar systems of the type (1.1) and (1.2) with
B(t) = 0, D(t) and L(t) are identity matrices and X(t) is a vector.

If the time scale T = R, then µ = 0, the system (1.1) becomes Sylvester matrix
dynamical system of the form

(1.3) X∆(t) = A(t)X(t) +X(t)B(t) + C(t)U(t)D∗(t).

If the time scale T = Z, then µ = 1, the system (1.1) become Sylvester matrix
delta-difference system of the form

(1.4) ∆X(t) = A(t)X(t) +X(t)B(t) +A(t)X(t)B(t) + C(t)U(t)D∗(t),

where ∆X(t) = X(t+ 1)−X(t). In the above system, if we put A(t) = A1(t)− In
and B(t) = B1(t)−In then system (1.4) becomes Sylvester matrix difference system
of the form

(1.5) X(t+ 1) = A1(t)X(t)B1(t) + C(t)U(t)D∗(t).

Therefore, study of behavior of controllability of Sylvester matrix system (1.1)
unify the study of (1.3), (1.4), (1.5) and extended to matrix dynamic systems on
time scales. The analytical, numerical solutions and control aspects of Sylvester
matrix differential system (1.3) was studied by Fausett [5]. The existence and
uniqueness, controllability and observability of matrix delta-difference system (1.4)
were studied by Murty [10]. The calculus of time scales was initiated by Stefan
Hilger [6] in order to create a theory that can unify discrete and continuous analysis.
The study of dynamic equations on time scales, is an area of mathematics that has
recently received a lot of attention and sheds new light on the discrepancies between
continuous differential equations and discrete difference equations. It also prevents
one from proving a result twice, once for differential equations and once for difference
equations. The general idea, which is the main goal of Bohner and Peterson’s
excellent introductory text [2, 3] is to prove a result for a dynamic equation where
the domain of the unknown function is so-called time scale. If T = R, the general
result obtained yields the same result concerning an ordinary differential equation.
If T = Z, the general result is the same result one would obtain concerning a
difference equation. This paper is well organized as follows:
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In section 2 we study some basic properties of time scales, Kronecker product
of matrices and develop preliminary results by converting the given problem into a
Kronecker product problem. The solution to the corresponding initial value problem
obtained in terms of two transition matrices of the systems X∆(t) = A(t)X(t) and
X∆(t) = B∗(t)X(t) by using the standard technique of variation of parameters [8].

In Section 3 we address the necessary and sufficient conditions for complete
controllability and complete observability under certain smoothness conditions.

2. Preliminaries

A great deal of work has been done since 1988, unifying the theory of differential
equations and the theory of difference equations by establishing the corresponding
results in time scale setting. For more detailed information refer the books [2] and
[3].

Definition 2.1. A nonempty closed subset of R is called a time scale. It is denoted
by T . By an interval we mean the intersection of the given interval with a time scale.
For t < supT and t > inf T , define the forward jump operator σ, and backward
jump operator ρ, respectively by

σ(t) = inf{s ∈ T, s > t} ∈ T

ρ(t) = sup{s ∈ T, s < t} ∈ T

For all t, r ∈ T if σ(t) = t, t is said to be right dense, (otherwise t is said to be right
scattered) and ρ(r) = r, r is said to be left dense, (otherwise r is said to be left
scattered). The graininess function µ(t) : T [0,∞) is defined by µ(t) = σ(t)− t.

Definition 2.2. A function x : T → R is right dense continuous (rd-continuous)
if it is continuous at every right dense point t ∈ R and its left hand limit exists at
each left dense point t ∈ R.

Definition 2.3. A mapping f : T → X, where X is a banach space, is called
rd-continuous if

(i) It is continuous at each right dense t ∈ T .

(ii) At each left dense point the left side limit f(t−) exists.

Definition 2.4. F : T k → R is called an antiderivative of f : T k → R provided
F∆(t) = f(t) holds for all t ∈ T k. We then define the integral by

t∫
a

f(s)∆s = F (t)− F (a).
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Theorem 2.5. Assume f : T → R is a function and let t ∈ T k. Then we have the
following:

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f(t) is differentiable at t
with

f∆(t) =
f(σ(t))− f(t)

µ(t)

(iii) If t is right-dense, then f is differentiable at t if and only if the limit

lim
t→s

f(t)− f(s)

t− s

exists as a finite number. In this case

f∆(t) = lim
s→t

f(t)− f(s)

t− s

(iv) If f is differentiable at t, then

f(σ(t)) = f(t) + µ(t)f∆(t).

Definition 2.6. A function f : T → R is called rd-continuous provided it is
continuous at right dense points in T and its left sided limits exists (finite) at left
dense points in T . The set rd-continuous functions f : T → R will be denoted by

Crd = Crd(T ) = Crd(T,R).

The set of functions f : T → R that are differentiable and whose derivative is
rd-continuous is denoted by

C1
rd = C1

rd(T ) = C1
rd(T,R).

Results 2.7. A,B ∈ R are matrix-valued functions on T , then

(i) ϕ0(t, s) ≡ I and ϕA(t, t) ≡ I

(ii) ϕA(σ(t), s) ≡ (I + µ(t)A(t) ϕA(t, s);

(iii) ϕ−1
A (t, s) ≡ ϕ∗

ΘA∗(t, s);

(iv) ϕA(t, s) = ϕ−1
A (s, t) = ϕ∗

ΘA∗(s, t)

(v) ϕA(t, s)ϕA(s, r) = ϕA(t, r)

(vi) ϕA(t, s)ϕB(t, s) = ϕA⊕B(t, s) if ϕA(t, s) and B(t) commute
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Theorem 2.8.([2]) Let A ∈ R be an n×n matrix-valued function on T and suppose
that f : T → Rn is rd-continuous. Let t0 ∈ T and y0 ∈ Rn. Then the initial value
problem

y∆(t) = A(t)y(t) + f(t), y(t0) = y0

has a unique solution y : T → R . Moreover, this solution is given by

y(t) = ϕA(t, t0)y0 +

t∫
t0

ϕA(t, σ(τ))f(τ)∆τ .

Now we present some properties and results for Kronecker products which are
useful for studying Kronecker product matrix dynamical systems on time scales.
Kronecker product is also known as a direct product or a tensor product is a concept
having its origin in group theory and has important applications in particle physics.
This technique has been successfully applied in various fields of matrix theory.

Definition 2.9. Let A ∈ Cm×n(Rm×n) and B ∈ Cp×q(Rp×q), then the Kronecker
product of A and B written as A⊗B, is defined to be the partitioned matrix

A⊗ B =


a11B a12B ... a1nB
a21B a22B ... a2nB
... ... ... ...

am1B am2B ... amnB


is an mp× nq matrix and is in Cmp×nq(Rmp×nq).

The Kronecker product has the following properties and rules [1].

(1) (A⊗ B)
∗
= A∗ ⊗ B∗

(2) (A⊗B)−1 = A−1 ⊗B−1 (provided A and B are invertible)

(3) (A⊗B)− = A− ⊗B− (A− is the generalized inverse of A)

(4) The mixed product rule: (A⊗B)(C⊗D) = (AC⊗BD) provided the dimen-
sions of the matrices are such that the various expressions exist.

(5) ∥A⊗B∥ = ∥A∥ ∥B∥, where norm of A is defined by ∥A∥ = maxi,j |aij |.

(6) There exists a zero element Omn = Om ⊗On

(7) There exists a unit element Imn = Im ⊗ In

(8) V ec(Y AB) = (B∗ ⊗A)V ecY

(9) If A and B are matrices both of order n× n, then

(i) V ec(AX) = (In ⊗A)V ecX

(ii) V ec(XA) = (A∗ ⊗ In)V ecX
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Definition 2.10. Let A = [aij ] ∈ Rm×n, we denote

Â = Vec A =


A.1

A.2

...
A.n

 , where A.j =


a1j
a2j
...

amj

, i ≤ j ≤ n.

Definition 2.11. Let A and B are rd-continuous matrices on time scale T , then

(A⊗B)∆(t) = A∆(t)⊗ B(t) + A(σ(t))⊗B∆(t)

A∆ is the generalized delta derivative of A, t is from a time scale T , which is a
known non-empty closed subset of R.

Now by applying the Vec operator to the ∆-differentiable matrix dynamical
system (1.1) also the output equation (1.2) and using Kronecker product properties,
we have

(2.1) Z∆(t) = G(t)Z(t) + [D ⊗ C]Û(t);Z(t0) = Z0

(2.2) Ŷ (t) = [L⊗K]Z(t),

where Z(t) = V ecX(t), Û(t) = V ecU(t), Ŷ (t) = V ecY (t) and

G(t) = [B∗ ⊗ I + I ⊗A+ µ(t)(B∗ ⊗A)]

is a n2 × n2 matrix. Let A(t) and B(t) be regressive and rd-continuous.

From the definition of Kronecker product G : T k → Rn2×n2

is regressive and
rd-continuous. System (2.1) and (2.2) is called the Kronecker product system asso-
ciated with (1.1) and (1.2).

Remark 2.12. It is easily seen that, if X(t) is the solution of (1.1) then V ecX(t) =
Z(t) is the solution of (2.1) and vice-versa.

Now we confine our attention to corresponding homogeneous matrix dynamical
system on time scales (2.1) given by

(2.3) Z∆(t) = G(t)Z(t)

Lemma 2.13. Let ϕ1(t, s) and ϕ2(t, s) are denote state transition matrices of the
systems X∆(t) = A(t)X(t) and X∆(t) = B∗(t)X(t) respectively. Then the matrix
ϕ(t, s) defined by

(2.4) ϕ(t, s) = ϕ2(t, s)⊗ ϕ1(t, s)
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is the state transition matrix of (2.3) and every solution of (2.3) is of the form
Z(t) = ϕ(t, s)Ψ (where Ψ is any constant matrix of order n2).

Proof. Consider

ϕ∆(t, s) = ϕ∆
2 (t, s)⊗ ϕ1(t, s) + ϕ2(σ(t), s)⊗ ϕ∆

1 (t, s)

= B∗ϕ2(t, s)⊗ ϕ1(t, s) + (1 + µ(t)B∗)ϕ2(t, s)⊗Aϕ1(t, s)

= (B∗ ⊗ In)(ϕ2(t, s)⊗ ϕ1(t, s)) + (ϕ2(t, s)⊗ (Aϕ1(t, s))

+ µ(t)B∗ϕ2(t, s))⊗ (Aϕ1(t, s))

= [(B∗ ⊗ In) + (In ⊗A) + µ(t)(B∗ ⊗A)](ϕ2(t, s)⊗ ϕ1(t, s))

= Gϕ(t, s),

also
ϕ(t, t) = ϕ2(t, t)⊗ ϕ1(t, t) = In ⊗ In = In2 .

Hence ϕ(t, s) is the transition matrix of (2.3). Moreover it can be easily seen that
Z(t) is a solution of (2.3) and every solution of (2.3) is of this form. 2

Theorem 2.14. ([7]) Let ϕ(t, s) = ϕ2(t, s)⊗ϕ1(t, s) be a transition matrix of (2.3),
then the unique solution of (2.1), subject to the initial condition Z(t0) = Z0 is

(2.5) Z(t) = ϕ(t, t0)[Z0 +

t∫
t0

ϕ(t0, σ(s))(D ⊗ C)(s)Û(s)∆s].

3. Main Results

In this section, we prove necessary and sufficient conditions for complete con-
trollability and complete observability of the matrix dynamical systems on time
scales (2.1) and (2.2).

Definition 3.1. The ∆-differential systems S1 given by (2.1) and (2.2) is said to
be completely controllable if for t0, any initial state Z(t0) = Z0 and any given final
state Zf there exists a finite time t1 > t0 and a control Û(t), t0 ≤ t1 such that
Z(t1) = Zf .

Theorem 3.2. The time scale dynamical system S1 is completely controllable on
the closed interval J = [t0, t1] if and only if the n2 × n2 symmetric controllability
matrix

(3.1) V (t0, t1) =

t1∫
t0

ϕ(t0, σ(s))(D ⊗ C)(s)(D ⊗ C)∗(s)ϕ∗(t0, σ(s))∆s,

where ϕ(t, s) is defined in (2.4), is non-singular. In this case the control

(3.2) Û(t) = −(D ⊗ C)∗(t)ϕ∗(t0, σ(s))V
−1(t0, t1){Z0 − ϕ(t0, t1)Zf}
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defined on t0 ≤ t1, transfers Z(t0) = Z0 to Z(t1) = Zf .

Proof. Suppose that V (t0, t1) is non-singular, then the control defined by (3.2)
exists. Now substituting (3.2) in (2.5) with t = t1, we have

Z(t1) = ϕ(t1, t0)[Z0 −
t1∫

t0

ϕ(t0, σ(s))(D ⊗ C)(s)(D ⊗ C)∗(s)ϕ∗(t0, σ(s))

×V −1(t0, t1){Z0 − ϕ(t0, t1)Zf}∆s] = Zf .

Hence the dynamical system S1 is completely controllable.
Conversely, suppose that the dynamical system S1 is completely controllable on

J , then we have to show that V (t0, t1) is non singular. Then there exists a non zero
n2 × 1 vector α such that

α∗V (t0, t1)α =

t1∫
t0

α∗ϕ(t0, σ(s))(D ⊗ C)(s)(D ⊗ C)∗(s)ϕ∗(t0, σ(s))α∆s

=

t1∫
t0

θ∗(σ(s), t0)θ(σ(s), t0)∆s

(3.3) α∗V (t0, t1)α =

t1∫
t0

∥θ∥2 ∆s ≥ 0

, where θ = (D⊗C)∗(s)ϕ∗(t0, σ(s))α. From (3.3) V (t0, t1) is positive semi definite.
Suppose that there exists some β ̸= 0 (zero vector) such that β∗V (t0, t1)β = 0,
then from (3.3) with θ = η, when α = β implies

t1∫
t0

∥η∥2 ∆s = 0.

Using the properties of norm, we have

(3.4) η(σ(s), t0) = 0, t0 ≤ t ≤ t1.

Since S1 is completely controllable, so there exists a control Û(t) making Z(t1) = 0
if Z(t0) = β. Hence from (2.5), we have

β = −
t1∫

t0

ϕ(t0, σ(s))(D ⊗ C)(s)Û(s)∆s.
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Consider

∥β∥2 = β∗β = −
t1∫

t0

Û∗(s)(D ⊗ C)∗(s)ϕ∗(t0, σ(s))β∆s

= −
t1∫

t0

Û∗(s)η(σ(s), t0)∆s = 0.

Hence β = 0, which is a contradiction to our assumption. Thus V (t0, t1) is positive
definite and is therefore non-singular. 2

We now turn our attention to the concept of observability on a timescale dy-
namical system.

Definition 3.3. The timescale dynamical system (2.1), (2.2) is completely observ-
able on J = [t0, t1] if for any time t0 and any initial state Z(t0) = Z0 there exists a
finite time t1 > t0 such that the knowledge of Û(t) and Ŷ (t) for t0 ≤ t1 suffices to
determine Z0 uniquely.

Now we present a necessary and sufficient condition for the system (2.1), (2.2)
to be completely observable.

Theorem 3.4. The system S1 is completely observable on J if and only if the
n2 × n2 symmetric observability matrix

(3.5) W (t0, t1) =

t1∫
t0

ϕ∗(s, t0)(L⊗K)∗(s)(L⊗K)(s)ϕ(s, t0)∆s

is non singular.

Proof. Suppose that W (t0, t1) is non-singular. It is simpler to consider the case of
zero input, and it does not entail any loss of generality. Since the concept is not
altered in the presence of a known input signal. Implies Ŷ (t) = (L⊗K)Z(t) since
from Z(t) = ϕ(t, t0)Z0, we have

(3.6) Ŷ (t) = (L⊗K)ϕ(t, t0)Z0

multiplying (3.6) on the left by ϕ∗(t, t0)(L⊗K)∗(t) and integrating from t0 to
t1 we obtain

t1∫
t0

ϕ∗(s, t0)(L⊗K)∗(s)Ŷ (s)∆s = W(t0, t1)Z0

since W (t0, t1) is non singular, Z0 can be determined uniquely. Hence the dynami-
cal system S1 is completely observable.
Conversely, suppose that the dynamical system S1 is completely observable. Then
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we prove that W (t0, t1) is non singular. Since W (t0, t1) is symmetric, we can con-
struct the quadratic form

(3.7) α∗W (t0, t1)α =

t1∫
t0

α∗ϕ∗(s, t0)(L⊗K)∗(s)(L⊗K)(s)ϕ(t0, σ(s))α∆s

=

t1∫
t0

∥η(s, t0)∥2 ∆s ≥ 0,

where α is an arbitrary column n2× 1 vector and η(s, t0) = (L⊗K)(s)ϕ(t0, σ(s))α.
From (3.7) W (t0, t1) is positive semi definite. Suppose that there exists some β ̸= 0
such that β∗W (t0, t1)β = 0, then from (3.7) with η = θ when α = β, implies

t1∫
t0

∥θ(s, t0)∥2 ∆s = 0 ⇒ θ(s, t0) = 0, t0 ≤ s ≤ t1

⇒ (L⊗K)(s)ϕ(t0, σ(s))β = 0, t0 ≤ s ≤ t1.

From (3.6), this implies that when Z0 = β, the out put is identically zero throughout
the interval, so that Z0 can not be determined from the knowledge of Ŷ (t). This
contradicts the supposition that S1 is completely observable. Hence W (t0, t1) is
positive definite, therefore it is non singular. This completes the proof. 2
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