## Behavior of Solutions of a Fourth Order Difference Equation

Raffat Abo-Zeid
Department of Basic Science, The Valley Higher Institute for Engineering \& Technology, Cairo, Egypt
e-mail : abuzead73@yahoo.com
Abstract. In this paper, we introduce an explicit formula for the solutions and discuss the global behavior of solutions of the difference equation

$$
x_{n+1}=\frac{a x_{n-3}}{b-c x_{n-1} x_{n-3}}, \quad n=0,1, \ldots
$$

where $a, b, c$ are positive real numbers and the initial conditions $x_{-3}, x_{-2}, x_{-1}, x_{0}$ are real numbers.

## 1. Introduction

Difference equations have played an important role in analysis of mathematical models of biology, physics and engineering. Recently, there has been a great interest in studying properties of nonlinear and rational difference equations. One can see $[3,7,9,10,11,12,13,14,16,17]$ and the references therein.

In [8], E.M. Elsayed determined the solutions to some difference equations. He obtained the solution to the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-3}}{1-x_{n-1} x_{n-3}}, \quad n=0,1, \ldots \tag{1.1}
\end{equation*}
$$

where the initial conditions are arbitrary nonzero positive real numbers. But he didn't point to any constraints on the initial conditions.

In fact, if we start with initial conditions $x_{0}=2, x_{-1}=1, x_{-2}=1, x_{-3}=0.5$ in equation (1.1), then undefined value for $x_{3}$ will be obtained. Therefore, additional information about the initial conditions must be given for any solution of equation (1.1) to be well-defined.

In [4], M. Aloqeili discussed the stability properties and semicycle behavior of the solutions of the difference equation

$$
x_{n+1}=\frac{x_{n-1}}{a-x_{n} x_{n-1}}, \quad n=0,1, \ldots
$$

Received November 5, 2015; accepted February 5, 2016.
2010 Mathematics Subject Classification: 39A10, 39A20
Key words and phrases: difference equation, periodic solution, convergence.
with real initial conditions and positive real number $a$.
In [1], we have discussed the oscillation, boundedness and the global behavior of all admissible solutions of the difference equation

$$
x_{n+1}=\frac{A x_{n-1}}{B-C x_{n} x_{n-2}}, \quad n=0,1, \ldots
$$

where $A, B, C$ are positive real numbers.
In [2], we have also discussed the oscillation, periodicity, boundedness and the global behavior of all admissible solutions of the difference equation

$$
x_{n+1}=\frac{A x_{n-2 r-1}}{B-C \prod_{i=l}^{k} x_{n-2 i}}, \quad n=0,1, \ldots
$$

where $A, B, C$ are positive real numbers.
In [5], the authors investigated the asymptotic behavior of solutions of the equation

$$
x_{n+1}=\frac{a x_{n-1}}{b+c x_{n} x_{n-1}}, \quad n=0,1, \ldots
$$

with positive parameters $a$ and $c$, negative parameter b and nonnegative initial conditions.
In [6], they also used the explicit formula for the solutions of the equation

$$
x_{n+1}=\frac{a x_{n-1}}{b+c x_{n} x_{n-1}}, \quad n=0,1, \ldots
$$

with positive parameters and nonnegative initial conditions in investigating their behavior.

In [15], H. Sedaghat determined the global behavior of all solutions of the rational difference equations

$$
x_{n+1}=\frac{a x_{n-1}}{x_{n} x_{n-1}+b}, \quad x_{n+1}=\frac{a x_{n} x_{n-1}}{x_{n}+b x_{n-2}}, \quad n=0,1, \ldots
$$

where $a, b>0$.
In this paper, we introduce an explicit formula and discuss the global behavior of solutions of the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{a x_{n-3}}{b-c x_{n-1} x_{n-3}}, \quad n=0,1, \ldots \tag{1.2}
\end{equation*}
$$

where $a, b, c$ are positive real numbers and the initial conditions $x_{-3}, x_{-2}, x_{-1}, x_{0}$ are real numbers.

## 2. Solution of Equation (1.2)

We define $\alpha_{i}=x_{-2+i} x_{-4+i}, i=1,2$.

Theorem 2.1. Let $x_{-3}, x_{-2}, x_{-1}$ and $x_{0}$ be real numbers such that for any $i \in$ $\{1,2\}, \alpha_{i} \neq \frac{b}{c \sum_{k=0}^{n}\left(\frac{a}{b}\right)^{k}}$ for all $n \in \mathbb{N}$. If $a \neq b$, then the solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of equation (1.2) is

$$
x_{n}=\left\{\begin{align*}
x_{-3} \prod_{j=0}^{\frac{n-1}{4}} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}-c}{\left(\frac{b}{a}\right)^{2 j+1}-1} \theta_{1}-c & , n=1,5,9, \ldots  \tag{2.1}\\
x_{-2} \prod_{j=0}^{\frac{n-2}{4}} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{2}-c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{2}-c} & , n=2,6,10, \ldots \\
x_{-1} \prod_{j=0}^{\frac{n-3}{4}} \frac{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}-c}{\left(\frac{b}{2}\right)^{2 j+2} \theta_{1}-c} & , n=3,7,11, \ldots \\
x_{0} \prod_{j=0}^{\frac{n-4}{4}} \frac{\left(\frac{a}{a}\right)^{2 j+1} \theta_{2}-c}{\left(\frac{b}{a}\right)^{2 j+2} \theta_{2}-c} & , n=4,8,12, \ldots
\end{align*}\right.
$$

where $\theta_{i}=\frac{a-b+c \alpha_{i}}{\alpha_{i}}, \alpha_{i}=x_{-2+i} x_{-4+i}$, and $i=1,2$.
Proof. We can write the given solution as

$$
\begin{gathered}
x_{4 m+1}=x_{-3} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}-c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}-c}, \quad x_{4 m+2}=x_{-2} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{2}-c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{2}-c}, \\
x_{4 m+3}=x_{-1} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}-c}{\left(\frac{b}{a}\right)^{2 j+2} \theta_{1}-c}, \quad x_{4 m+4}=x_{0} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j+1} \theta_{2}-c}{\left(\frac{b}{a}\right)^{2 j+2} \theta_{2}-c}, \quad m=0,1, \ldots
\end{gathered}
$$

It is easy to check the result when $m=0$. Suppose that the result is true for $m>0$. Then

$$
\begin{aligned}
x_{4(m+1)+1} & =\frac{a x_{4 m+1}}{b-c x_{4 m+1} x_{4 m+3}}=\frac{a x_{-3} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}-c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}-c}}{b-c x_{-3} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}-c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}-c} x_{-1} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}-c}{\left(\frac{b}{a}\right)^{2 j+2} \theta_{1}-c}} \\
& =\frac{a x_{-3} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}-c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}-c}}{b-c x_{-3}\left(\prod_{j=0}^{m}\left(\frac{b}{a}\right)^{2 j} \theta_{1}-c\right) x_{-1} \prod_{j=0}^{m} \frac{1}{\left(\frac{b}{a}\right)^{2 j+2} \theta_{1}-c}} \\
& =\frac{a x_{-3} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}-c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}-c}}{b-c x_{-1} x_{-3}\left(\theta_{1}-c\right)\left(\frac{1}{\left(\frac{b}{a}\right)^{2 m+2} \theta_{1}-c}\right)} \\
& =\frac{a x_{-3}\left(\left(\frac{b}{a}\right)^{2 m+2} \theta_{1}-c\right) \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}-c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}-c}}{b\left(\left(\frac{b}{a}\right)^{2 m+2} \theta_{1}-c\right)-c \alpha_{1}\left(\theta_{1}-c\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a x_{-3}\left(\left(\frac{b}{a}\right)^{2 m+2} \theta_{1}-c\right) \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}-c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}-c}}{b\left(\left(\frac{b}{a}\right)^{2 m+2} \theta_{1}-c\right)-c(a-b)} \\
& =\frac{x_{-3}\left(\left(\frac{b}{a}\right)^{2 m+2} \theta_{1}-c\right) \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}-c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}-c}}{\frac{b}{a}\left(\left(\frac{b}{a}\right)^{2 m+2} \theta_{1}-c\right)-\frac{c}{a}(a-b)} \\
& =x_{-3} \frac{\left.\left(\frac{b}{a}\right)^{2 m+2} \theta_{1}-c\right)}{\left(\left(\frac{b}{a}\right)^{2 m+3} \theta_{1}-c\right)} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}-c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}-c} \\
& =x_{-3} \prod_{j=0}^{m+1} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}-c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}-c} .
\end{aligned}
$$

Similarly we can show that

$$
x_{4(m+1)+2}=x_{-2} \prod_{j=0}^{m+1} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{2}-c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{2}-c}, \quad x_{4(m+1)+3}=x_{-1} \prod_{j=0}^{m+1} \frac{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}-c}{\left(\frac{b}{a}\right)^{2 j+2} \theta_{1}-c}
$$

and

$$
x_{4(m+1)+4}=x_{0} \prod_{j=0}^{m+1} \frac{\left(\frac{b}{a}\right)^{2 j+1} \theta_{2}-c}{\left(\frac{b}{a}\right)^{2 j+2} \theta_{2}-c} .
$$

This completes the proof.

## 3. Global Behavior of Equation (1.2)

In this section, we investigate the global behavior of equation (1.2) with $a \neq b$, using the explicit formula of its solution.

We can write the solution of equation (1.2) as

$$
x_{4 m+2 t+i}=x_{-4+2 t+i} \prod_{j=0}^{m} \zeta(j, t, i)
$$

where $\zeta(j, t, i)=\frac{\left(\frac{b}{a}\right)^{2 j+t} \theta_{i}-c}{\left(\frac{b}{a}\right)^{2 j+t+1} \theta_{i}-c}, t \in\{0,1\}$ and $i \in\{1,2\}$.
Theorem 3.1. Let $\left\{x_{n}\right\}_{n=-3}^{\infty}$ be a solution of equation (1.2) such that for any $i \in\{1,2\}, \alpha_{i} \neq-\frac{b}{c \sum_{k=0}^{n}\left(\frac{a}{b}\right)^{k}}$ for all $n \in \mathbb{N}$. If $\alpha_{i}=\frac{b-a}{c}$ for all $i \in\{1,2\}$, then $\left\{x_{n}\right\}_{n=-3}^{\infty}$ is periodic with prime period 4 .
Proof. Assume that $\alpha_{i}=\frac{b-a}{c}$ for all $i \in\{1,2\}$. Then $\theta_{i}=0$ for all $i \in\{1,2\}$. Therefore,

$$
x_{4 m+2 t+i}=x_{-4+2 t+i} \prod_{j=0}^{m} \zeta(j, t, i)=x_{-4+2 t+i}, \quad m=0,1, \ldots
$$

This completes the proof.

In the following Theorem, suppose that $\alpha_{i} \neq \frac{b-a}{c}$ for all $i \in\{1,2\}$.
Theorem 3.2. Let $\left\{x_{n}\right\}_{n=-3}^{\infty}$ be a solution of equation (1.2) such that for any $i \in\{1,2\}, \alpha_{i} \neq \frac{b}{c \sum_{k=0}^{n}\left(\frac{a}{b}\right)^{k}}$ for all $n \in \mathbb{N}$. Then the following statements are true.

1. If $a<b$, then $\left\{x_{n}\right\}_{n=-3}^{\infty}$ converges to 0 .
2. If $a>b$, then $\left\{x_{n}\right\}_{n=-3}^{\infty}$ converges to a period-4 solution.

## Proof.

1. If $a<b$, then $\zeta(j, t, i)$ converges to $\frac{a}{b}<1$ as $j \rightarrow \infty$, for all $t \in\{0,1\}$ and $i \in\{1,2\}$. So, for every pair $(t, i) \in\{0,1\} \times\{1,2\}$ we have for a given $0<\epsilon<1$ that, there exists $j_{0}(t, i) \in \mathbb{N}$ such that, $|\zeta(j, t, i)|<\epsilon$ for all $j \geq j_{0}(t, i)$. If we set $j_{0}=\max _{0 \leq t \leq 1,1 \leq i \leq 2} j_{0}(t, i)$, then for all $t \in\{0,1\}$ and $i \in\{1,2\}$ we get

$$
\begin{aligned}
\left|x_{4 m+2 t+i}\right| & =\left|x_{-4+2 t+i}\right|\left|\prod_{j=0}^{m} \zeta(j, t, i)\right| \\
& =\left|x_{-4+2 t+i}\right|\left|\prod_{j=0}^{j_{0}-1} \zeta(j, t, i) \| \prod_{j=j_{0}}^{m} \zeta(j, t, i)\right| \\
& <\left|x_{-4+2 t+i}\right|\left|\prod_{j=0}^{j_{0}-1} \zeta(j, t, i)\right| \epsilon^{m-j_{0}+1} .
\end{aligned}
$$

As $m$ tends to infinity, the solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ converges to 0 .
2. If $a>b$, then $\zeta(j, t, i) \rightarrow 1$ as $j \rightarrow \infty, t \in\{0,1\}$ and $i \in\{1,2\}$. This implies that, for every pair $(t, i) \in\{0,1\} \times\{1,2\}$, there exists $j_{1}(t, i) \in \mathbb{N}$ such that $\zeta(j, t, i)>0$ for all $t \in\{0,1\}$ and $i \in\{1,2\}$. If we set $j_{1}=$ $\max _{0 \leq t \leq 1,1 \leq i \leq 2} j_{1}(t, i)$, then for all $t \in\{0,1\}$ and $i \in\{1,2\}$ we get

$$
\begin{aligned}
x_{4 m+2 t+i} & =x_{-4+2 t+i} \prod_{j=0}^{m} \zeta(j, t, i) \\
& =x_{-4+2 t+i} \prod_{j=0}^{j_{1}-1} \zeta(j, t, i) \exp \left(\sum_{j=j_{1}}^{m} \ln (\zeta(j, t, i))\right) .
\end{aligned}
$$

We shall test the convergence of the series $\sum_{j=j_{1}}^{\infty}|\ln (\zeta(j, t, i))|$.
Since for all $t \in\{0,1\}$ and $i \in\{1,2\}$ we have $\lim _{j \rightarrow \infty}\left|\frac{\ln (\zeta(j+1, t, i)}{\ln (\zeta(j, t, i)}\right|=\frac{0}{0}$, using L'Hospital's rule we obtain

$$
\lim _{j \rightarrow \infty}\left|\frac{\ln \zeta(j+1, t, i)}{\ln \zeta(j, t, i)}\right|=\left(\frac{b}{a}\right)^{2}<1
$$

It follows from the ratio test that the series $\sum_{j=j_{1}}^{\infty}|\ln \zeta(j, t, i)|$ is convergent. This ensures that there are four positive real numbers $\mu_{t i}, t \in\{0,1\}$ and $i \in\{1,2\}$ such that

$$
\lim _{m \rightarrow \infty} x_{4 m+2 t+i}=\mu_{t i}, \quad t \in\{0,1\} \quad \text { and } \quad i \in\{1,2\}
$$

where

$$
\mu_{t i}=x_{-4+2 t+i} \prod_{j=0}^{\infty} \frac{\left(\frac{b}{a}\right)^{2 j+t} \theta_{i}-c}{\left(\frac{b}{a}\right)^{2 j+t+1} \theta_{i}-c}, \quad t \in\{0,1\} \quad \text { and } \quad i \in\{1,2\} .
$$

This completes the proof.
Example (1) Figure 1. shows that if $a=2, b=3, c=1(a<b)$, then the solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of equation (1.2) with initial conditions $x_{-3}=0.2, x_{-2}=2, x_{-1}=-2$ and $x_{0}=0.4$ converges to 0 .

Example (2) Figure 2. shows that if $a=3, b=1, c=0.8(a>b)$, then the solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of equation (1.2) with initial conditions $x_{-3}=0.2, x_{-2}=2$, $x_{-1}=-2$ and $x_{0}=0.4$ converges to a period- 4 solution.


Figure 1: $x_{n+1}=\frac{2 x_{n-3}}{3-x_{n-1} x_{n-3}}$
Figure 2: $x_{n+1}=\frac{3 x_{n-3}}{1-0.8 x_{n-1} x_{n-3}}$
4. Case $a=b$

In this section, we investigate the behavior of the solution of the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{a x_{n-3}}{a-c x_{n-1} x_{n-3}}, \quad n=0,1, \ldots \tag{3.1}
\end{equation*}
$$

Theorem 4.1. Let $x_{-3}, x_{-2}, x_{-1}$ and $x_{0}$ be real numbers such that for any $i \in$ $\{1,2\}, \alpha_{i} \neq \frac{a}{c(n+1)}$ for all $n \in \mathbb{N}$. Then the solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of equation (3.1) is

$$
x_{n}=\left\{\begin{align*}
x_{-3} \prod_{j=0}^{\frac{n-1}{4}} \frac{a-(2 j) c \alpha_{1}}{a-(2 j+1) c \alpha_{1}} & , n=1,5,9, \ldots  \tag{3.2}\\
x_{-2} \prod_{j=0}^{\frac{n-2}{4}} \frac{a-(2 j) c \alpha_{2}}{a-(2 j+1) c \alpha_{2}} & , n=2,6,10, \ldots \\
x_{-1} \prod_{j=0}^{\frac{n-3}{4}} \frac{a-(2 j+1) c \alpha_{1}}{a-(2 j+2) c \alpha_{1}} & , n=3,7,11, \ldots \\
x_{0} \prod_{j=0}^{\frac{n-4}{4}} \frac{a-(2 j+1) c \alpha_{2}}{a-(2 j+2) c \alpha_{2}} & , n=4,8,12, \ldots
\end{align*}\right.
$$

Proof. The proof is similar to that of Theorem (2.1) and will be omitted.
We can write the solution of equation (3.1) as

$$
x_{4 m+2 t+i}=x_{-4+2 t+i} \prod_{j=0}^{m} \gamma(j, t, i)
$$

where $\gamma(j, t, i)=\frac{a-(2 j+t) c \alpha_{i}}{a-(2 j+t+1) c \alpha_{i}}, t \in\{0,1\}$ and $i \in\{1,2\}$.
Theorem 4.2. Let $\left\{x_{n}\right\}_{n=-3}^{\infty}$ be a nontrivial solution of equation (3.1) such that for any $i \in\{1,2\}, \alpha_{i} \neq \frac{a}{c(n+1)}$ for all $n \in \mathbb{N}$. If $\alpha_{i}=0$ for all $i \in\{1,2\}$, then $\left\{x_{n}\right\}_{n=-3}^{\infty}$ is periodic with prime period 4.
Proof. Assume that $\alpha_{i}=0$ for all $i \in\{1,2\}$. Then $\gamma(j, t, i)=1$ for all $t \in\{0,1\}$ and $i \in\{1,2\}$. Therefore,

$$
x_{4 m+2 t+i}=x_{-4+2 t+i} \prod_{j=0}^{m} \gamma(j, t, i)=x_{-4+2 t+i}, \quad m=0,1, \ldots
$$

This completes the proof.
In the following Theorem, suppose that $\alpha_{i} \neq 0$ for all $i \in\{1,2\}$.
Theorem 4.3. Let $\left\{x_{n}\right\}_{n=-3}^{\infty}$ be a solution of equation (3.1) such that for any $i \in\{1,2\}, \alpha_{i} \neq \frac{a}{c(n+1)}$ for all $n \in \mathbb{N}$. Then $\left\{x_{n}\right\}_{n=-3}^{\infty}$ converges to 0 .
Proof. It is clear that $\gamma(j, t, i) \rightarrow 1$ as $j \rightarrow \infty, t \in\{0,1\}$ and $i \in\{1,2\}$. This implies that, for every pair $(t, i) \in\{0,1\} \times\{1,2\}$ there exists $j_{2}(t, i) \in \mathbb{N}$ such that, $\gamma(j, t, i)>0$ for all $t \in\{0,1\}$ and $i \in\{1,2\}$. If we set $j_{2}=\max _{0 \leq t \leq 1,1 \leq i \leq 2} j_{2}(t, i)$, then for all $t \in\{0,1\}$ and $i \in\{1,2\}$ we get

$$
\begin{aligned}
x_{4 m+2 t+i} & =x_{-4+2 t+i} \prod_{j=0}^{m} \gamma(j, t, i) \\
& =x_{-4+2 t+i} \prod_{j=0}^{j_{2}-1} \gamma(j, t, i) \exp \left(-\sum_{j=j_{2}}^{m} \ln \frac{1}{\gamma(j, t, i)}\right) .
\end{aligned}
$$

We shall show that $\sum_{j=j_{2}}^{\infty} \ln \frac{1}{\gamma(j, t, i)}=\sum_{j=j_{2}}^{\infty} \ln \frac{a-(2 j+t+1) c \alpha_{i}}{a-(2 j+t) c \alpha_{i}}=\infty$, by considering the series $\sum_{j=j_{2}}^{\infty} \frac{-c \alpha_{i}}{a-(2 j+t) c \alpha_{i}}$. As
$\lim _{j \rightarrow \infty} \frac{\ln (1 / \gamma(j, t, i))}{-c \alpha_{i} /(a-(2 j+t)) c \alpha_{i}}=\lim _{j \rightarrow \infty} \frac{\ln \left(\left(a-(2 j+t+1) c \alpha_{i}\right) /\left(a-(2 j+t) c \alpha_{i}\right)\right)}{-c \alpha_{i} /\left(a-(2 j+t) c \alpha_{i}\right)}=1$,
using the limit comparison test, we get $\sum_{j=j_{2}}^{\infty} \ln \frac{1}{\gamma(j, t, i)}=\infty$. Then

$$
x_{4 m+2 t+i}=x_{-4+2 t+i} \prod_{j=0}^{j_{2}-1} \gamma(j, t, i) \exp \left(-\sum_{j=j_{2}}^{m} \ln \frac{1}{\gamma(j, t, i)}\right)
$$

converges to 0 as $m \rightarrow \infty$. Therefore, $\left\{x_{n}\right\}_{n=-3}^{\infty}$ converges to 0 .
5. Case $a=b=c$

In this section, we investigate the behavior of the solution of the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-3}}{1-x_{n-1} x_{n-3}}, \quad n=0,1, \ldots \tag{3.3}
\end{equation*}
$$

Theorem 5.1. Let $x_{-3}, x_{-2}, x_{-1}$ and $x_{0}$ be real numbers such that for any $i \in$ $\{1,2\}, \alpha_{i} \neq \frac{1}{n+1}$ for all $n \in \mathbb{N}$. Then the solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of equation (3.3) is

$$
x_{n}=\left\{\begin{array}{cl}
x_{-3} \prod_{j=0}^{\frac{n-1}{=0}} \frac{1-(2 j) \alpha_{1}}{1-(2 j+1) \alpha_{1}} & , n=1,5,9, \ldots  \tag{3.4}\\
x_{-2} \prod_{j=0}^{n-2} \frac{1-(2 j) \alpha_{2}}{1-(2 j+1) \alpha_{2}} & , n=2,6,10, \ldots \\
x_{-1} \prod_{j=3}^{n-3} \frac{1-(2 j+1) \alpha_{1}}{1-(2 j+2)_{1}} & , n=3,7,11, \ldots \\
x_{0} \prod_{j=0}^{n-4} \frac{1-(2 j+1) \alpha_{2}}{1-(2 j+2) \alpha_{2}} & , n=4,8,12, \ldots
\end{array}\right.
$$

Proof. The proof is similar to that of Theorem (2.1) and will be omitted.
Theorem 5.2. Let $\left\{x_{n}\right\}_{n=-3}^{\infty}$ be a nontrivial solution of equation (3.3) such that for any $i \in\{1,2\}, \alpha_{i} \neq-\frac{b}{c \sum_{k=0}^{n}\left(\frac{a}{b}\right)^{k}}$ for all $n \in \mathbb{N}$. If $\alpha_{i}=0$ for all $i \in\{1,2\}$, then $\left\{x_{n}\right\}_{n=-3}^{\infty}$ is periodic with prime period 4.
Proof. Assume that $\alpha_{i}=0$ for all $i \in\{1,2\}$. Then

$$
x_{4 m+2 t+i}=x_{-4+2 t+i}, \quad m=0,1, \ldots
$$

This completes the proof.
In the following Theorem, suppose that $\alpha_{i} \neq 0$ for all $i \in\{1,2\}$.
Theorem 5.3. Let $\left\{x_{n}\right\}_{n=-3}^{\infty}$ be a solution of equation (3.3) such that for any $i \in\{1,2\}, \alpha_{i} \neq \frac{1}{n+1}$ for all $n \in \mathbb{N}$. Then $\left\{x_{n}\right\}_{n=-3}^{\infty}$ converges to 0 .


Figure 3: $x_{n+1}=\frac{x_{n-3}}{1-1.5 x_{n-1} x_{n-3}}$

Example (3) Figure 3. shows that if $a=b=1, c=1.5$, then the solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of equation (3.1) with initial conditions $x_{-3}=5, x_{-2}=-1, x_{-1}=1.3$ and $x_{0}=-1.1$ converges to 0 .

Example (4) Figure 4. shows that if $a=b=c$, then the solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of equation (3.3) with initial conditions $x_{-3}=5, x_{-2}=1, x_{-1}=1.3$ and $x_{0}=-1.1$ converges to 0 .

## References

[1] R. Abo-Zeid and C. Cinar, Global behavior of the difference equation $x_{n+1}=$ $\frac{A x_{n-1}}{B-C x_{n} x_{n-2}}$, Bol. Soc. Paran. Mat.31(1)(2013), 43-49.
[2] R. Abo-Zeid, Global Attractivity of a Higher-Order Difference Equation, Discrete Dyn. Nat. Soc. Article ID930410(2012), 11 Pages.
[3] R. P. Agarwal, Difference Equations and Inequalities, First Edition, Marcel Dekker, 1992.
[4] M. Aloqeili, Dynamics of a rational difference equation, Appl. Math. Comput., 176(2006), 768-774.
[5] A. Andruch-Sobi, M. Migda, Further properties of the rational rercursive sequence $x_{n+1}=\frac{a x_{n-1}}{b+c x_{n} x_{n-1}}$, Opuscula Math., 26(3)(2006), 387-394.
[6] A. Andruch-Sobi, M. Migda, On the rational recursive sequence $x_{n+1}=\frac{a x_{n-1}}{b+c x_{n} x_{n-1}}$, Tatra Mt. Math. Publ. 43(2009), 1-9.
[7] E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2008.
[8] E. M. Elsayed, On the solution of some difference equations, Eur. J. Pure Appl. Math., 4(2011), 287 - 303.
[9] E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC, 2005.
[10] G. Karakostas, Convergence of a difference equation via the full limiting sequences method, Diff. Eq. Dyn. Sys., 1(4)(1993), 289-294.
[11] V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, 1993.
[12] N. Kruse and T. Nesemann, Global asymptotic stability in some discrete dynamical systems, J. Math. Anal. Appl., 253(1)(1999), 151-158.
[13] M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2002.
[14] H. Levy and F. Lessman, Finite Difference Equations, Dover, New York, NY, USA, 1992.
[15] H. Sedaghat, Global behaviours of rational difference equations of orders two and three with quadratic terms, J. Diff. Eq. Appl., 15(3)(2009), 215-224.
[16] S. Stevic, On positive solutions of a $(k+1)$ th order difference equation, Appl. Math. Let., 19(5)(2006), 427-431.
[17] S. Stevic, More on a rational recurrence relation, Appl. Math. E-Notes, 4(2004), 80-84.

