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Neşe Ömür∗

Department of Mathematics, Kocaeli University, 41380 İzmit Kocaeli, Turkey
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Abstract. In this paper, we define two kinds variants of the super Catalan matrix as well

as their q-analoques. We give explicit expressions for LU-decompositions of these matrices

and their inverses.

1. Introduction

For a given sequence {an}∞n=0 , the Hankel matrix is defined by


a0 a1 a2 ...
a1 a2 a3 ...
a2 a3 a4 ...
... ... ... ...

 .

One can obtain a combinatorial matrix having interesting properties from a
Hankel matrix. For example, the Hilbert matrix Hn = [hij ] is defined by hij =

1
i+j−1 (for more details, see [2, 4]) and the Filbert matrix Fn = [fij ] is defined by
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fij =
1

Fi+j−1
(see [1, 6]). Clearly they are of the forms

Hn =


1
1

1
2

1
3 ...

1
2

1
3

1
4 ...

1
3

1
4

1
5 ...

... ... ... ...

 and Fn =


1
F0

1
F1

1
F2

...
1
F1

1
F2

1
F3

...
1
F2

1
F3

1
F4 ...

... ... ... ...

 ,

where Fn is nth Fibonacci number.
Throughout this paper, we will use the q-Pochhammer symbol

(x; q)n = (1− x) (1− xq) ...
(
1− xqn−1

)
and the Gaussian q-binomial coefficients[

n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
.

It is clearly that

(1.1) lim
q→1

[
n

k

]
q

=

(
n

k

)
,

where
(
n
k

)
is the usual binomial coefficient.

The Cauchy binomial theorem is given by

n∑
k=0

q(
k+1
2 )

[
n

k

]
q

xk =
n∏

k=1

(
1 + xqk

)
,

and Rothe’s formula (see [2]) is given by

n∑
k=0

(−1)
k
q(

k
2)
[
n

k

]
q

xk = (x; q)n =

n−1∏
k=0

(
1− xqk

)
.

Prodinger [3] consider the reciprocal super Catalan matrix M with the entries

mij = i!(i+j)!j!
(2i)!(2j)! and obtain explicit formulae for its LU-decomposition, the LU-

decomposition of its inverse, and some related matrices. For all results, q-analogues
are also presented.

We rewrite the matrix M in terms of three binomial coefficients, two of them is
in the reciprocal form, as shown

mij =
i!(i+ j)!j!

(2i)!(2j)!
=

i!j!

(2i)!(2j)!
=

(
2i

i

)−1(
2j

j

)−1(
i+ j

i

)
.

By inspiring the matrix M, we consider two kinds variants of it by keeping
only one binomial coefficient in reciprocal form in the first one and two binomial
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coefficients in reciprocal forms in the second one. Also we will add two additional
parameters to each one. Now we define these matrices: The first one is the matrix
A = [aij ] of order n with the entries

aij =

(
2i+m

i

)(
2j + t

j

)−1(
i+ j

i

)
and the second one is the n× n matrix B with the entries

bij =

(
2i+m

i

)−1(
2j + t

j

)(
i+ j

i

)−1

,

where m and t are nonnegative integers and all indices of these matrices start at
(0, 0).

We write the matrices A and B which are the q-analagues of the matrices A
and B, respectively. We give explicit expressions for LU-decompositions of these
matrices and their inverses.

By help of a computer, LU-decompositions of these matrices were firstly ob-
tained and then we have achieved the formulas by certain skills especially guessing
skill. Using q-Zeilberger algorithm [5] and elementary matrix operations, the proofs
are given as combinatorial identities. We will discuss a few of them here rather than
all of them.

2. Decomposition of the Matrix A

The matrix A = [âij ] has the entries âij =
[
2i+m

i

]
q

[
2j+t
j

]−1

q

[
i+j
i

]
q
for 0 ≤ i, j ≤

n− 1. Now we will give expressions for LU-decompositions L1U1 = A and L2U2 =
A−1, for L−1

1 , U−1
1 and for L−1

2 , U−1
2 by the following theorem.

Theorem 2.1. For m,t ≥ 0,

(L1)ij =

[
2i+m

i

]
q

[
i

j

]
q

[
2j +m

j

]−1

q

,

(
L−1
1

)
ij

= (−1)i−jq(
i−j
2 )

[
2i+m

i

]
q

[
i

j

]
q

[
2j +m

j

]−1

q

,

(U1)ij = qi
2−1

[
2i+m

i

]
q

[
j

i

]
q

[
2j + t

j

]−1

q

,

(
U−1
1

)
ij

= (−1)i−jq(
j−i
2 )−j2+1

[
2i+ t

i

]
q

[
j

i

]
q

[
2j +m

j

]−1

q

,
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(L2)ij = (−1)
i−j

q(
n−i−1

2 )−(n−j−1
2 )

[
2i+ t

i

]
q

[
n− j − 1

i− j

]
q

[
2j + 1

j

]
q

×
[
i+ j + 1

i

]−1

q

[
2j + t

j

]−1

q

,

(
L−1
2

)
ij

= q(n−i−1)(j−i)

[
i+ j

j

]
q

[
n− j − 1

i− j

]
q

[
2i+ t

i

]
q

[
2i

i

]−1

q

[
2j + t

j

]−1

q

,

(U2)ij = (−1)
i−j

q(
n−j−1

2 )−(n−i−1
2 )−(n−i−1)(2i+1)

[
2i+ t

i

]
q

[
n+ i

i+ j + 1

]
q

,

×
[
i+ j

j − i

]
q

[
i+ j

j

]−1

q

[
2j +m

j

]−1

q

,

(
U−1
2

)
ij

= q(n−j−1)(i+j+1)

[
2j + 1

j − i

]
q

[
i+ j

i

]
q

[
2i+m

i

]
q

[
2j + t

j

]−1

q

×
[
n+ j

i+ j + 1

]−1

q

,

and

detA =
n−1∏
k=0

qk
2

[
2k +m

k

]
q

[
2k + t

k

]−1

q

.

Proof. To prove L1L
−1
1 = In where In is the identity matrix of order n, consider

∑
j≤k≤i

(L1)ik
(
L−1
1

)
kj

= (−1)
j

[
2i+m

i

]
q

[
2j +m

j

]−1

q

∑
j≤k≤i

(−1)kq(
k−j
2 )

[
i

k

]
q

[
k

j

]
q

.

Since [
i

k

]
q

[
k

j

]
q

=

[
i

j

]
q

[
i− j

k − j

]
q

,

we have ∑
j≤k≤i

(L1)ik
(
L−1
1

)
kj

= (−1)
j

[
2i+m

i

]
q

[
2j +m

j

]−1

q

[
i

j

]
q

∑
j≤k≤i

(−1)kq(
k−j
2 )

[
i− j

k − j

]
q

=

[
2i+m

i

]
q

[
2j +m

j

]−1

q

[
i

j

]
q

∑
0≤k≤i−j

(−1)kq(
k
2)
[
i− j

k

]
q

.
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Using Rothe’s formula, we see that (1; q)i−j is equal to 1 if i = j and 0 otherwise.
Then we get ∑

j≤k≤i

(L1)ik
(
L−1
1

)
kj

= δi,j ,

as claimed, where δi,j is Kronecker delta. For U1 and U−1
1 , we write∑

i≤k≤j

(U1)ik
(
U−1
1

)
kj

= qi
2

[
2i+m

i

]
q

[
2j +m

j

]−1

q

∑
i≤k≤j

(−1)k−jq(
j−k
2 )−j2

[
k

i

]
q

[
j

k

]
q

= (−1)
j
qi

2−j2
[
2i+m

i

]
q

[
2j +m

j

]−1

q

[
j

i

]
q

∑
i≤k≤j

(−1)kq(
j−k
2 )

[
j − i

k − i

]
q

= (−1)
i+j

qi
2−j2+(j2)+(

i+1
2 )−ij

[
2i+m

i

]
q

[
2j +m

j

]−1

q

[
j

i

]
q

×
∑

0≤k≤j−i

q(
k+1
2 )

[
j − i

k

]
q

(
−qi−j

)k
.

By the Cauchy binomial theorem, for i ̸= j, we get∑
0≤k≤j−i

q(
k+1
2 )

[
j − i

k

]
q

(
−qi−j

)k
=

j−i∏
k=1

(1− qi−j+k) = 0.

Then ∑
i≤k≤j

(U1)ik
(
U−1
1

)
kj

= δi,j .

For LU-decomposition, we will show∑
0≤k≤min{i,j}

(L1)ik (U1)kj = âij ,

where A = [âij ] . Then∑
0≤k≤min{i,j}

(L1)ik (U1)kj

=

[
2i+m

i

]
q

[
2j + t

j

]−1

q

∑
0≤k≤min{i,j}

qk
2−1

[
i

k

]
q

[
j

k

]
q

= q−1

[
2i+m

i

]
q

[
2j + t

j

]−1

q

(q; q)i (q; q)j

×
∑

0≤k≤min{i,j}

qk
2 1

(q; q)i−k (q; q)j−k (q; q)k (q; q)k
.
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Denote the last sum in the above equation by SUMk. The Mathematica version
of the q-Zeilberger algorithm [5] produces the recursion

SUMi =
(1− qi+j)

(1− qi)2
SUMi−1.

Since SUM0 = 1
(q;q)i(q;q)j

, we obtain

SUMi =

[
i+ j

i

]
q

1

(q; q)i (q; q)j
.

Then we write ∑
0≤k≤min{i,j}

(L1)ik (U1)kj = âij .

For L2 and L−1
2 , we have∑

j≤k≤i

(L2)ik
(
L−1
2

)
kj

= (−1)
i
q(

n−i−1
2 )

[
2i+ t

i

]
q

[
2j + t

j

]−1

q

×
∑

j≤k≤i

(−1)
k
q−(

n−k−1
2 )+(n−k−1)(j−k)

[
n− k − 1

i− k

]
q

[
2k + 1

k

]
q

×
[
i+ k + 1

i

]−1

q

[
k + j

j

]
q

[
n− j − 1

k − j

]
q

[
2k

k

]−1

q

= (−1)
i
q(n−1)(j+1)−(n2)

[
2i+ t

i

]
q

[
2j + t

j

]−1

q

(q ; q)i (q ; q)n−j−1

(q ; q)j (q ; q)n−i−1

×
∑

j≤k≤i

(−1)
k
q(

k
2)−kj

(q ; q)2k+1 (q ; q)k+j

(q ; q)i−k (q ; q)i+k+1 (q ; q)k−j (q ; q)2k
.

By the q-Zeilberger algorithm for the second sum in the last equation, we obtain
that it is equal to 0 provided that i ̸= j. If i = j, it is obvious that (L2)ik

(
L−1
2

)
kj

=

1. Thus ∑
j≤k≤i

(L2)ik
(
L−1
2

)
kj

= δi,j ,

as claimed. Similarly we have∑
i≤k≤j

(U2)ik
(
U−1
2

)
kj

= δi,j .
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For the LU−decomposition of A−1,we should that A−1 = L2U2 which is same
as A = U−1

2 L−1
2 . So it is sufficient to show that∑

max{i,j}≤k≤n−1

(
U−1
2

)
ik

(
L−1
2

)
kj

= âij .

Hence

∑
max{i,j}≤k≤n−1

(
U−1
2

)
ik

(
L−1
2

)
kj

=

[
2i+m

i

]
q

[
2j + t

j

]−1

q

×
∑

max{i,j}≤k≤n−1

q(n−k−1)(i+k+1)+(n−k−1)(j−k)

[
2k + 1

k − i

]
q

[
i+ k

i

]
q

×
[
n+ k

i+ k + 1

]−1

q

[
k + j

j

]
q

[
n− j − 1

k − j

]
q

[
2k

k

]−1

q

= qn(i+j−1)

[
2i+m

i

]
q

[
2j + t

j

]−1

q

×
∑

max{i,j}≤k≤n−1

q(n−k−1)(i+j+1)

[
2k + 1

k − i

]
q

[
i+ k

i

]
q

×
[
k + j

j

]
q

[
n− j − 1

k − j

]
q

[
2k

k

]−1

q

[
n+ k

i+ k + 1

]−1

q

.

If we take (n+ 1) instead of n, we write
(2.1)∑

j≤k≤n

q(n−k)(i+j+1)

[
2k + 1

k − i

]
q

[
i+ k

i

]
q

[
k + j

j

]
q

[
n− j

k − j

]
q

[
2k

k

]−1

q

[
n+ k + 1

i+ k + 1

]−1

q

.

Denote sum in (2.1) by SUMn. For i ̸= n and j ̸= n, the q-Zeilberger algorithm
gives the following recursion

SUMn = SUMn−1.

Thus, SUMn =SUMj =
[
i+j
i

]
q
which completes the proof except the case (i, j) =

(n− 1, n− 1), which could be easily checked. The proof is obtained. 2

3. The Decomposition of the Matrix B

In this section, the matrix B =
[
b̂ij

]
is defined with entries

b̂ij =

[
2i+m

i

]−1

q

[
2j + t

j

]
q

[
i+ j

i

]−1

q
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for 0 ≤ i, j ≤ n− 1. Now we will give expressions for LU-decompositions L3U3 = B

and L4U4 = B−1, for L−1
3 , U−1

3 and for L−1
4 , U−1

4 without proof by the following
theorem

Theorem 3.1. For m, t ≥ 0 and 0 ≤ i, j ≤ n− 1,

(L3)ij =

[
2j

j

]
q

[
2j +m

j

]
q

[
i

j

]
q

[
i+ j

j

]−1

q

[
2i+m

i

]−1

q

,

(
L−1
3

)
ij
= (−1)i−jq(

i−j
2 )

[
i+ j − 1

j

]
q

[
2j +m

j

]
q

[
i

j

]
q

[
2i− 1

i− 1

]−1

q

[
2i+m

i

]−1

q

,

(U3)ij = (−1)
i
qi

2+(i2)
[
2j + t

j

]
q

[
i+ j − 1

j − i

]
q

[
i+ j

i

]−1

q

[
i+ j − 1

j

]−1

q

[
2i+m

i

]−1

q

,

(
U−1
3

)
ij
= (−1)

i
q(

j−i
2 )−(j2)−j2

[
j

i

]
q

[
2j +m

j

]
q

[
2j

j

]
q

[
i+ j − 1

i

]
q

[
2i+ t

i

]−1

q

,

(L4)ij = (−1)
i−j

q−(
n−j−1

2 )+(n−i−1
2 )

[
n+ i− 1

i

]
q

[
2j + t

j

]
q

[
n− j + 1

i− j

]
q

×
[
2i+ t

i

]−1

q

[
n+ j − 1

j

]−1

q

,

(
L−1
4

)
ij
= q(n−i−1)(j−i)

[
2j + t

j

]
q

[
n− j − 1

i− j

]
q

[
n+ i− 1

i− j

]
q

[
2i+ t

i

]−1

q

[
i

j

]−1

q

,

(U4)ij = (−1)
n−j−1

q(
n−j−1

2 )+(i+n−1)(i−n+1)

[
n+ j − 1

i

]
q

[
n− i+ j − 1

j

]
q

×
[
n− i− 1

j − i

]
q

[
2j +m

j

]
q

[
2i+ t

i

]−1

q

.

(U4)
−1
ij = (−1)

j
q(

n
2)−(

j+1
2 )+i(n−j−1)

[
2j + t

j

]
q

[
n− i− 1

j − i

]
q

[
n+ i− j − 1

i

]−1

q

×
[
n+ i− 1

j

]−1

q

[
2i+m

i

]−1

q
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and

detB =
n−1∏
k=0

(−1)
k
qk(3k−1)/2

[
2k + t

t

]
q

[
2k +m

k

]−1

q

[
k + t

k

]−1

q

[
2k − 1

k

]−1

q

.

4. The Matrix A

In this section, we have the following results without proof by using the results
of Theorem 2.1 with the fact given in (1.1). For 0 ≤ i, j < n− 1,

(L1)ij =

(
2i+m

i

)(
i

j

)(
2j +m

j

)−1

,

(
L−1
1

)
ij

= (−1)i−j

(
2i+m

i

)(
i

j

)(
2j +m

j

)−1

,

(U1)ij =

(
2i+m

i

)(
j

i

)(
2j + t

j

)−1

,

(
U−1
1

)
ij

= (−1)i−j

(
2i+ t

i

)(
j

i

)(
2j +m

j

)−1

,

(L2)ij = (−1)
i−j

(
2i+ t

i

)(
n− j − 1

i− j

)(
2j + 1

j

)(
i+ j + 1

i

)−1(
2j + t

j

)−1

,

(
L−1
2

)
ij

=

(
i+ j

j

)(
n− j − 1

i− j

)(
2i+ t

i

)(
2i

i

)−1(
2j + t

j

)−1

,

(U2)ij = (−1)
i−j

(
2i+ t

i

)(
n+ i

i+ j + 1

)(
i+ j

j − i

)(
i+ j

j

)−1(
2j +m

j

)−1

,

(
U−1
2

)
ij

=

(
2j + 1

j − i

)(
i+ j

i

)(
2i+m

i

)(
2j + t

j

)−1(
n+ j

i+ j + 1

)−1

,

detA =

n−1∏
k=0

(
2k +m

k

)(
2k + t

k

)−1

.

5. The Matrix B

In this section, we have the following results without proof by using the results
of Theorem 2.2 with the fact given in (1.1). For 0 ≤ i, j < n− 1,

(L3)ij =

(
2j

j

)(
2j +m

j

)(
i

j

)(
i+ j

j

)−1(
2i+m

i

)−1

,
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(
L−1
3

)
ij

= (−1)i−j

(
i+ j − 1

j

)(
2j +m

j

)(
i

j

)(
2i− 1

i− 1

)−1(
2i+m

i

)−1

,

(U3)ij = (−1)
i

(
2j + t

j

)(
i+ j − 1

j − i

)(
i+ j

i

)−1(
i+ j − 1

j

)−1(
2i+m

i

)−1

,

(
U−1
3

)
ij

= (−1)
i−1

(
j

i

)(
2j +m

j

)(
2j

j

)(
i+ j − 1

i

)(
2i+ t

i

)−1

,

(L4)ij = (−1)
i−j

(
n+ i− 1

i

)(
2j + t

j

)(
n− j + 1

i− j

)(
2i+ t

i

)−1(
n+ j − 1

j

)−1

,

(
L−1
4

)
ij

=

(
2j + t

j

)(
n− j − 1

i− j

)(
n+ i− 1

i− j

)(
2i+ t

i

)−1(
i

j

)−1

,

(U4)ij = (−1)
n−j

(
n+ j − 1

i

)(
n− i+ j − 1

j

)(
n− i− 1

j − i

)(
2j +m

j

)
×
(
2i+ t

i

)−1

,

(
U−1
4

)
ij

= (−1)
j

(
2j + t

j

)(
n− i− 1

j − i

)(
n+ i− j − 1

i

)−1(
n+ i− 1

j

)−1

×
(
2i+m

i

)−1

,

detB =
n−1∏
k=0

(−1)
k

(
2k + t

k

)(
2k +m

k

)−1(
k + t

k

)−1(
2k − 1

k

)−1

.
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