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Abstract. An n×n matrix A over a commutative ring is strongly clean provided that it

can be written as the sum of an idempotent matrix and an invertible matrix that commute.

Let R be an arbitrary commutative ring, and let A(x) ∈ Mn

(
R[[x]]

)
. We prove, in this

note, that A(x) ∈ Mn

(
R[[x]]

)
is strongly clean if and only if A(0) ∈ Mn(R) is strongly

clean. Strongly clean matrices over quotient rings of power series are also determined.

1. Introduction

An n × n matrix over a commutative ring is strongly clean provided that it
can be written as the sum of an idempotent matrix and an invertible matrix. It is
attractive to determine when a matrix over a commutative ring is strongly clean. In
[8, Example 1], Wang and Chen constructed 2×2 matrices over a commutative local
ring which are not strongly clean. In fact, it is hard to determine when a matrix is
strongly clean. In [4, Theorem 2.3], Chen et al. discussed when every n× n matrix
over a commutative local ring R, i.e., Mn(R), is strongly clean(n = 2, 3). In [7,
Theorem 2.6], Li investigated when a single 2× 2 matrix over a commutative local
ring is strongly clean. In [11, Theorem 7], Yang and Zhou characterized a 2 × 2
matrix ring over a local ring in which every matrix is strongly clean. Strongly clean
generalized 2×2 matrices over a local ring were also studied by Tang and Zhou (cf.
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[9, Theorem 15]. In [1, Theorem 12], Borooah et al. characterized when an n × n
matrix over a commutative local ring R is strongly clean, in terms of factorization in
the polynomial ring R[t]. A commutative ring R is projective free provided that ev-
ery finitely generated R-module is free. So as to study strong cleanness of matrices
over a projective free ring, Fan introduced the condition, and characterize strong
cleanness of matrices over commutative projective free rings having. Recently, Diesl
and Dorsey investigate strongly clean matrices over arbitrary rings. For a commu-
tative ring R, they proved that every φ ∈ Mn(R) with characteristic polynomial h
is strongly clean, if and only if h has an SRC factorization (cf. [5, Theorem 4.6]).

Let R[[x]] be the ring of power series over R. Then there exists a natural epi-
morphism R[[x]] → R, f(x) 7→ f(0), which takes any matrix A(x) over power series
to the matrix A(0) over R. The motivation of this note is to determine if the strong
cleanness of matrices in R[[x]] and the corresponding one in R coincide with each
other. Let R be an arbitrary commutative ring, and let A(x) ∈ Mn

(
R[[x]]

)
. We

shall prove that A(x) ∈Mn

(
R[[x]]

)
is strongly clean if and only if A(0) ∈Mn(R) is

strongly clean. Strongly clean matrices over quotient rings of power series are also
determined.

Throughout, all rings are commutative with an identity. Let h(t) ∈ R[t]. We
say that h(t) is a monic polynomial of degree n if h(t) = tn+an−1t

n−1+· · ·+a1t+a0
where an−1, · · · , a1, a0 ∈ R. Every square matrix φ ∈ Mn(R) over a commutative
ring R is associated with a characteristic polynomial χ(φ). Let f, g ∈ R[t]. The
notation (f, g) = 1 means that there exist some h, k ∈ R[t] such that fh+ gk = 1.
That is, the ideal generated by f, g is R[t]. We write U(R) for the set of all invert-
ible elements in R and Mn(R) for the rings of all n×n matrices over a ring R. R[t]
and R[[t]] always stand for the rings of polynomials and power series over a ring R,
respectively.

2. Results

Let R be a ring. Given polynomials f(t) = tm + a1t
m−1 + · · · + am, g(t) =

b0t
n + b1t

n−1 + · · · + bn(b0 ̸= 0) ∈ R[t], the resultant of f and g is defined by the
determinant of the (m+ n)× (m+ n) matrix

res(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a1 · · · am
1 a1 · · · am

1 a1 · · · am
. . .

. . .
. . .

. . .

1 a1 · · · am
b0 b1 · · · bn

b0 b1 · · · bn
b0 b1 · · · bn

. . .
. . .

. . .
. . .

b0 b1 · · · bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where blank spaces consist of zeros. The following is called the Weyl Principal. Let
f, g be polynomials in Z[x1, x2, · · · , xn] with g ̸= 0 (i.e., g is not the zero polyno-
mial). If for all (α1, · · · , αn) ∈ Qn, f(α1, · · · , αn) = 0 whenever g(α1, · · · , αn) ̸= 0,
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then f = 0 in any commutative ring R. We begin with the following results which
are analogous to those over fields.

Lemma 1. Let R be a ring, and let f ∈ R[t] be monic and g, h ∈ R[t]. Then the
following are equivalent:

(1) res(f, g) = res(f, g + fh).

(2) res(f, gh) = res(f, g)res(f, h).

Proof. (1) Write h = c0t
s + · · ·+ cs ∈ R[t]. It will suffice to show that res(f, g) =

res(f, g + cs−it
if). Since any determinant in which every entry in a row is a sum

of two elements is the sum of two corresponding determinants, the result follows.
(2) Write f = tm + a1t

m−1 + · · · + am, g = b0t
n + b1t

n−1 + · · · + bn, h =
c0t

s + c1t
s−1 + · · ·+ cs. Then

α(a1, · · · , am; b0, · · · , bn; c0, · · · , cs) : = res(f, gh)− res(f, g)res(f, h)
∈ Z[a1, · · · , am; b0, · · · , bn; c0, · · · , cs].

Consider

α(x1, · · · , xm; y0, · · · , yn; z0, · · · , zs) ∈ Z[x1, · · · , xm; y0, · · · , yn; z0, · · · , zs].

Clearly, the result holds if R = Q.
For any u1, · · · , um; v0, · · · , vn; w0, · · · , ws ∈ Q, we see that

α(u1, · · · , um; v0, · · · , vn;w0, · · · , ws) = 0.

By the Weyl Principal that

α(x1, · · · , xm; y0, · · · , yn; z0, · · · , zs) = 0

in Z[x1, · · · , xm; y0, · · · , yn; z0, · · · , zs]. Therefore

α(a1, · · · , am; b0, · · · , bn; c0, · · · , cs) = 0,

and so res(f, gh) = res(f, g)res(f, h). 2

Lemma 2. Let R be a ring, and let f, g ∈ R[t] be monic. Then the following are
equivalent:

(1) (f, g) = 1.

(2) res(f, g) ∈ U(R).

Proof. (1) ⇒ (2) As (f, g) = 1, we can find some u, v ∈ R[t] such that uf + vg = 1.
By virtue of Lemma 1, one easily checks that res(f, vg) = res(f, v)res(f, g) =
res(f, vg + uf) = res(f, 1) = 1. Accordingly, res(f, g) ∈ U(R).
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(2) ⇒ (1) Let m = deg(f) and n = deg(g). Observing that

res(f, g)

∣∣∣∣∣∣∣∣∣
Im+n−1

tm+n

...
t

0 · · · 0 1

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∗

tnf
...
f
tmg
...
g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

therefore we can find some u, v ∈ R[t] such that res(f, g) = uf + vg. Hence(
res(f, g)

)−1
uf +

(
res(f, g)

)−1
vg = 1, as asserted. 2

For any r ∈ R, set Sr = {f ∈ R[t] | f monic, and f(r) ∈ U(R) }.

Lemma 3. ([5, Theorem 4.4 and Theorem 4.6]) Let R be a ring, and let h ∈ R[t]
be a monic polynomial of degree n. Then the following are equivalent:

(1) Every φ ∈Mn(R) with χ(φ) = h is strongly clean.

(2) There exists a factorization h = h0h1 such that h0 ∈ S0, h1 ∈ S1 and
(h0, h1) = 1.

Let A(x) =
(
aij(x)

)
∈ Mn

(
R[[x]]

)
, where each aij(x) ∈ R[[x]]. We use A(0) to

denote the matrix
(
aij(0)

)
∈Mn(R). We now have at our disposal the information

necessary to prove the following.

Theorem 4. Let R be a ring, and let A(x) ∈ Mn

(
R[[x]]

)
(n ≥ 1). Then the

following are equivalent:

(1) A(0) ∈Mn(R) is strongly clean.

(2) A(x) ∈Mn

(
R[[x]]

)
is strongly clean.

Proof. (1) ⇒ (2) Obviously, R[[x]] is projective-free. Let H(x, t) = χ
(
A(x)

)
∈

R[[x]][t]. Then H(0, t) = χ
(
A(0)

)
∈ R[t]. By using Lemma 3, H(0, t) = h0h1,

where h0 = tm + α1t
m−1 + · · · + αm ∈ S0, h1 = ts + β1t

s−1 + · · · + βs ∈ S1 and
(h0, h1) = 1. Next, we will find a factorization H(x, t) = H0H1 where H0(x, t) =

tm +
m−1∑
i=0

Ai(x)t
i ∈ S0 and H1(x, t) = ts +

s−1∑
i=0

Bi(x)t
i ∈ S1. Choose H0(0, t) ≡ h0

and H1(0, t) ≡ h1. Write H(x, t) =
n∑

i=0

( ∞∑
j=0

cijx
j
)
ti. Then

H(x, t) =
∞∑
j=0

( n∑
i=0

cijt
i
)
xj

= H(0, t) +
∞∑
j=1

( n∑
i=0

cijt
i
)
xj .
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Write Ai(x) =
∞∑
j=0

aijx
j and Bi(x) =

∞∑
j=0

bijx
j . Then

H0 = tm +
m−1∑
i=0

( ∞∑
j=0

aijx
j
)
ti

= tm +
∞∑
j=0

(m−1∑
i=0

aijt
i
)
xj

= h0 +
∞∑
j=1

(m−1∑
i=0

aijt
i
)
xj .

Likewise,

H1 = h1 +

∞∑
j=1

( s−1∑
i=0

bijt
i
)
xj .

Write H0H1 = h0h1 +
∞∑
j=1

zjx
j . Thus, we should have

z1 = h0
( s−1∑
i=0

bi1t
i
)
+
(m−1∑

i=0

ai1t
i
)
h1

=
n−1∑
i=0

ci1t
i.

This implies that(
b(s−1)1, · · · , b01, a(m−1)1, · · · , a01

)
A =

(
c(n−1)1, · · · , c01

)
,

where A =



1 α1 · · · αm

1 α1 · · · αm

. . .
. . .

. . .
. . .

1 α1 · · · αm

1 β1 · · · βs
1 β1 · · · βs

. . .
. . .

. . .
. . .

1 β1 · · · βs


. As (h0, h1) = 1, it follows from

Lemma 2 that res(h0, h1) ∈ U(R). Thus, det(A) ∈ U(R), and so we can find
ai1, bj1 ∈ R.

z2 = h0
( s−1∑
i=0

bi2t
i
)
+
(m−1∑

i=0

ai1t
i
)( s−1∑

i=0

bi1t
i
)
+

(m−1∑
i=0

ai2t
i
)
h1

=
n−1∑
i=0

ci2t
i.
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Hence

h0
( s−1∑
i=0

bi2t
i
)
+

(m−1∑
i=0

ai2t
i
)
h1 =

n−1∑
i=0

ci2t
i −

(m−1∑
i=0

ai1t
i
)( s−1∑

i=0

bi1t
i
)

=
n−1∑
i=0

di2t
i.

Thus, ((
b(s−1)2, · · · , b02, a(m−1)2, · · · , a02

))
A =

(
d(n−1)2, · · · , d02

)
,

whence we can find ai2, bj2 ∈ R. By iteration of this process, we can find
aij , bij ∈ R, j = 3, 4, · · · . Therefore we have H0 and H1 such that H(x, t) =
H0H1. Further, H0(x, 0) = H0(0, 0) + xf(x) = h0(0) + xf(x) ∈ U

(
R[[x]]

)
and

H1(x, 1) = H1(0, 1) + xg(x) = h1(1) + xg(x) ∈ U
(
R[[x]]

)
. Thus, H0(x, t) ∈ S0

and H1(x, t) ∈ S1. As (h0, h1) = 1, we get
(
H0,H1

)
≡ 1

(
mod (xR[[x]])[t]

)
, and

so
(
H0,H1

)
+ J

(
R[[x]]

)
R[[x]][t] = R[[x]][t]. Set M = R[[x]][t]/

(
H0,H1

)
. Then M

is a finitely generated R[[x]]-module, and that J
(
R[[x]]

)
M = M . By Nakayama’s

Lemma, M = 0, and so
(
H0,H1

)
= 1. Accordingly, A(x) ∈ Mn

(
R[[x]]

)
is strongly

clean by Lemma 3.
(2) ⇒ (1) This is obvious. 2

Corollary 5. Let R be a ring, and let A(x) ∈ Mn

(
R[x]/(xn)

)
(n ≥ 1). Then the

following are equivalent:

(1) A(0) ∈Mn(R) is strongly clean.

(2) A(x) ∈Mn

(
R[x]/(xn)

)
is strongly clean.

Proof. (1) ⇒ (2) Write A(x) =
n−1∑
i=0

aix
i ∈ Mn

(
R[x]/(xn)

)
. Then A(x) ∈

Mn

(
R[[x]]

)
. In view of Theorem 4, there exist E2 = E =

( ∞∑
k=0

eijk x
k
)
, U =( ∞∑

k=0

uijk x
k
)

∈ GLn

(
R[[x]]

)
such that A(x) = E + U and EU = UE. As

R[[x]]/(xn) ∼= R[x]/(xn), we see that A(x) = E + U and EU = UE, where E
2
=

E =
( n−1∑
k=0

eijk x
k
)
∈ Mn

(
R[x]/(xn)

)
and U =

( n−1∑
k=0

uijk x
k
)
∈ GLn

(
R[[x]]/(xn)

)
, as

desired.
(2) ⇒ (1) This is clear. 2

We now extend [6, Theorem 2.10] and [10, Theorem 2.7] as follows.

Corollary 6. Let R be a ring, and let n ≥ 1. Then the following are equivalent:

(1) Mn(R) is strongly clean.
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(2) Mn

(
R[[x]]

)
is strongly clean.

(3) Mn

(
R[x]/(xm)

)
(m ≥ 1) is strongly clean.

(3) Mn

(
R[[x1, · · · , xm]]

)
(m ≥ 1) is strongly clean.

(3) Mn

(
R[[x1, · · · , xm]]/(xn1

1 , · · · , xnm
m )

)
(m ≥ 1) is strongly clean.

Proof. These are obvious by induction, Theorem 4 and Corollary 5. 2

Example 7. Let A(x) ∈ M2

(
Z[[x]]

)
. Then A(x) ∈ M2

(
Z[[x]]

)
is strongly clean if

and only if A(0) ∈ GL2(Z), or I2 −A(0) ∈ GL2(Z), or A(0) is similar to one of the

matrices in the set
{( 0 0

0 1

)
,

(
0 0
0 −1

)
,

(
2 0
0 1

)
,

(
2 0
0 −1

)}
.

Proof. In light of Theorem 4, A(x) ∈M2

(
Z[[x]]

)
is strongly clean if and only if so

is A(0). Therefore we complete the proof, by [2, Example 16.4.9]. 2

Example 8. Let A(x) =

 x 3 + x2

1 +
∞∑
i=1

xi 2− x

 ∈ M2(Z[[x]]). Then χ(A(0)) =

t2 − 2t − 3. It is easy to verify that there are no any h0 ∈ S0 and h1 ∈ S1 such
that χ(A) = h0h1. Accordingly, A(0) ∈ M2(Z) is not strongly clean by Lemma 3.
Therefore A(x) ∈M2(Z[[x]]) is not strongly clean, in terms of Theorem 4.

Lemma 9. Let R be a ring, char(R) = 2, and let G = {1, g} be a group. Then
the following hold:

(1) R[x]/(x2 − 1) ∼= RG.

(2) a+ bg ∈ U(RG) if and only if a+ b ∈ U(R).

Proof. (1) is proved in [3, Lemma 2.1].
(2) Obviously, (a+ bg)(a− bg) = a2 − b2 = (a + b)(a− b). Hence, (a + bg)2 =

(a + b)2, as char(R) = 2. If a + bg ∈ U(RG), then (a + bg)(x + yg) = 1 for some
x, y ∈ R. This implies that (a+ bg)2(x+ yg)2 = 1, hence that (a+ b)2(x+ y)2 = 1.
Accordingly, a+ b ∈ U(R). The converse is analogous. 2

Let A(x) =
(
aij(x)

)
∈Mn

(
R[x]/(x2−1)

)
where deg

(
aij(x)

)
≤ 1, and let r ∈ R.

We use A(r) to stand for the matrix
(
aij(r)

)
∈Mn(R).

Theorem 10. Let R be a ring with char(R) = 2 and let A(x) ∈Mn

(
R[[x]]/(x2 −

1)
)
(n ≥ 1). Then the following are equivalent:

(1) A(1) ∈Mn(R) is strongly clean.

(2) A(x) ∈Mn

(
R[[x]]/(x2 − 1)

)
is strongly clean.

Proof. (1) ⇒ (2) Let H(g, t) = χ
(
A(g)

)
∈ (RG)[t]. Then H(1, t) = χ

(
A(1)

)
∈ R[t].

In light of Lemma 3, H(1, t) = h0h1, where h0 = tm + αm−1t
m−1 + · · · + α0 ∈
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S0, h1 = ts+βs−1t
s−1+ · · ·+β0 ∈ S1 and (h0, h1) = 1. We shall find a factorization

H(g, t) = H0H1 where H0(g, t) = tm +
m−1∑
i=0

(
yi + (αi − yi)g

)
ti ∈ S0 and H1(g, t) =

ts +
s−1∑
i=0

(
zi + (βi − zi)g

)
ti ∈ S1. Clearly, H0(1, t) ≡ h0 and H1(1, t) ≡ h1. We

will suffice to find y′is and z′is. Write H(g, t) =
n∑

i=0

(
ri + sig

)
ti. The equality

H(g, t) = H0H1 is equivalent to

tn +
n−1∑
i=0

rit
i =

(
tm +

m−1∑
i=0

yit
i
)(
ts +

s−1∑
i=0

zit
i
)
+
(m−1∑

i=0

(αi − yi)t
i
)( s−1∑

i=0

(βi − zi)t
i
)
(∗)

n−1∑
i=0

sit
i =

(
tm +

m−1∑
i=0

yit
i
)( s−1∑

i=0

(βi − zi)t
i
)
+

(
ts +

s−1∑
i=0

zit
i
)(m−1∑

i=0

(αi − yi)t
i
)
(∗∗).

(∗∗) holds from H(1, t) = h0h1 = H0(1, t)H1(1, t). (∗) is equivalent to

y0z0 + (α0 − y0)(β0 − z0) = r0,
y0z1 + y1z0 + (α0 − y0)(β1 − z1) + (α1 − y1)(β0 − z0) = r1,

...
ym−2 + ym−1zs−1 + zs−2 + (αm−1 − ym−1)(βs−1 − zs−1) = rn−2,

ym−1 + zs−1 = rn−1.

As char(R) = 2, we have

β0y0 + α0z0 = r0 + α0β0,
β0y1 + β1y0 + α0z1 + α1z0 = r1 + α0β1 + α1β0,

...
βs−1ym−1 + ym−2 + αm−1zs−1 + zs−2 = rn−2 + αm−1βs−1,

ym−1 + zs−1 = rn−1.

This implies that(
ym−1, · · · , y0, zs−1, · · · , z0

)
A =

(
∗, · · · , ∗

)
,

where

A =



1 βm−1 · · · β0
1 βm−1 · · · β0

. . .
. . .

. . .
. . .

1 βm−1 · · · β0
1 αs−1 · · · α0

1 αs−1 · · · α0

. . .
. . .

. . .
. . .

1 αs−1 · · · α0


.
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As (h1, h0) = 1, it follows from Lemma 2, that res(h1, h0) ∈ U(R). Thus,
det(A) ∈ U(R), and so we can find yi, zj ∈ R such that (∗) and (∗∗) hold. In
other words, we have H0 and H1 such that H(g, t) = H0H1. Obviously, H0(g, 0) =
y0+(α0−y0)g. As y0+(α0−y0) = α0 = h0(0) ∈ U(R), it follows by Lemma 9 that

H0(g, 0) ∈ U(RG), i.e., H0 ∈ S0. Further, H1(g, 1) = 1 +
s−1∑
i=1

(
zi + (βi − zi)g

)
=

1 +
s−1∑
i=1

zi +
( s−1∑
i=1

(βi − zi)
)
g.

It is easy to check that 1+
s−1∑
i=1

zi +
( s−1∑
i=1

(βi − zi)
)
= 1+

s−1∑
i=1

βi = h1(1) ∈ U(R).

In view of Lemma 9, H1 ∈ S1. Clearly, φ(g) := res(H0, H1) ∈ RG. As
φ(1) = res

(
H0(1, t),H1(1, t)

)
= res(h0, h1) ∈ U(R). By using Lemma 9 again,

φ(g) ∈ U(RG), i.e., res(H0,H1) ∈ U(RG). In light of Lemma 2, we get (H0,H1) =
1.

Therefore, A(g) ∈Mn

(
RG

)
is strongly clean, as required.

(2) ⇒ (1) Let ψ : RG → R, a + bg 7→ a + b. Then we get a corresponding
ring morphism µ :Mn(RG) →Mn(R),

(
aij(g)

)
7→

(
ψ(aij(g))

)
. As A(g) is strongly

clean, we can find an idempotent E ∈ Mn(RG) such that A(g) − E ∈ GLn(RG)
and EA = AE. Applying µ, we get A(1)− µ(E) ∈ GLn(R), where µ(E) ∈ Mn(R)
is an idempotent, hence the result follows. 2

Example 11. Let S = {0, 1, a, b} be a set. Define operations by the following
tables:

+ 0 1 a b

0
1
a
b

0 1 a b
1 0 b a
a b 0 1
b a 1 0

,

× 0 1 a b

0
1
a
b

0 0 0 0
0 1 a b
0 a b 1
0 b 1 a

.

Then S is a finite field with | S | = 4. Let

R = {s1 + s2z | s1, s2 ∈ S, z is an indeterminant satisfying z2 = 0}.

Then R is a commutative local ring with charR = 2. We claim that

A(x) =

(
az z + x

1 + x b+ zx

)
∈M2

(
R[x]/(x2 − 1)

)
is strongly clean. Clearly, A(1) =

(
az 1 + z
0 1 + bz

)
∈ M2(R). As χ

(
A(1)

)
has a

root az ∈ J(R) and a root 1 + bz ∈ 1 + J(R), A(1) is strongly clean, and we are
through by Theorem 10.
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