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Abstract. In this paper, we consider the generalized Lucas sequence which is the (p, q)

- Lucas sequence. Then we used the Binet’s formula to show some properties of the (p, q)

- Lucas number. We get some generalized identities of the (p, q) - Lucas number.

1. Introduction

Fibonacci number and Lucas number cover a wide range of interest in modern
mathematics as they appear in the comprehensive works of Koshy [4] and Vajda
[5]. The Fibonacci number Fn is the term of the sequence where each term is
the sum of the two previous terms beginning with the initial values F0 = 0 and
F1 = 1. The well-known Fibonacci sequence {Fn} is defined as F0 = 0, F1 = 1 and
Fn = Fn−1 + Fn−2 for n ≥ 2. And the Lucas sequence is defined as L0 = 2, L1 = 1
and Ln = Ln−1 + Ln−2 for n ≥ 2.

Falcon [3] studied the k-Lucas sequence {Lk,n} which is defined as Lk,0 =
2, Lk,1 = k and Lk,n+1 = kLk,n + Lk,n−1 for n ≥ 1, k ≥ 1. If k = 1, we get
the classical Lucas sequence {2, 1, 3, 4, 7, 11, 18, ...}. If k = 2, we get the Pell-Lucas
sequence {2, 2, 6, 14, 34, 82, 198, ...}.

The well-known Binet’s formulas for k-Fibonacci number and k-Lucas number,

see [1, 2, 3], are given by Fk,n =
rn1 − rn2
r1 − r2

and Lk,n = rn1+r
n
2 where r1 =

k +
√
k2 + 4

2

and r2 =
k −

√
k2 + 4

2
are roots of the characteristic equation r2 − kr − 1 = 0. We

note that r1 + r2 = k, r1r2 = −1 and r1 − r2 =
√
k2 + 4.

The generalized of Fibonacci sequence {Fp,q,n} is defined as Fp,q,0 = 0, Fp,q,1 = 1
and Fp,q,n = pFp,q,n−1 + qFp,q,n−2 for n ≥ 2 which we call the (p, q) - Fibonacci
sequence. So, each term of the (p, q) - Fibonacci sequence is called (p, q) - Fibonacci
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number. Moreover, the generalized of Lucas sequence {Lp,q,n} is defined as Lp,q,0 =
2, Lp,q,1 = p and Lp,q,n = pLp,q,n−1 + qLp,q,n−2. So, it is called the (p, q) - Lucas
sequence. Then each term of the (p, q) - Lucas sequence is called (p, q) - Lucas
number. The Binet’s formulas for the (p, q) - Fibonacci number and the (p, q)

- Lucas number are given by Fp,q,n =
rn1 − rn2
r1 − r2

and Lp,q,n = rn1 + rn2 where r1 =

p+
√
p2 + 4q

2
and r2 =

p−
√
p2 + 4q

2
are roots of the characteristic equation r2 −

pr − q = 0. We note that r1 + r2 = p, r1r2 = −q and r1 − r2 =
√
p2 + 4q.

In 2015, Suvarnamani and Tatong [6] proved some results of the (p, q) - Fi-
bonacci number. Moreover, Raina and Srivastava [7] showed a class of numbers
associated with the Lucas number. Then Djordjevicand Srivastava [8] showed the
example for the application of the Fibonacci number to the generalized function.
In this paper, we find some properties of the (p, q) - Lucas numbers.

2. Main Results

Theorem 2.1. For n ≥ 1, we get Lp,q,n+1Lp,q,n−1 − L2
p,q,n = (−q)n−1

(p2 + 4q).

Proof. For n ≥ 1, we have Lp,q,n+1Lp,q,n−1 − L2
p,q,n

= (rn+1
1 + rn+1

2 )(rn−1
1 + rn−1

2 )− (rn1 + rn2 )
2

= (r2n1 + r2n2 + rn−1
1 rn+1

2 + rn+1
1 rn−1

2 )− (r2n1 + 2rn1 r
n
2 + r2n2 )

= rn+1
1 rn−1

2 + rn−1
1 rn+1

2 − 2rn1 r
n
2

= rn−1
1 rn−1

2 (r21 − 2r1r2 + r22)
= (−q)n−1(r1 − r2)

2

= (−q)n−1(p2 + 4q). 2

Theorem 2.2. For n ≥ 2, we get

Lp,q,n−2Lp,q,n+1 − Lp,q,n−1Lp,q,n = (−q)n−2
(p3 + 4pq).

Proof. For n ≥ 2, we have Lp,q,n−2Lp,q,n+1 − Lp,q,n−1Lp,q,n

= (rn−2
1 + rn−2

2 )(rn+1
1 + rn+1

2 )− (rn−1
1 + rn−1

2 )(rn1 + rn2 )
= (r2n−1

1 +r2n−1
2 +rn−2

1 rn+1
2 +rn+1

1 rn−2
2 )− (r2n−1

1 +r2n−1
2 +rn1 r

n−1
2 +rn−1

1 rn2 )
= rn−2

1 rn+1
2 + rn+1

1 rn−2
2 − rn1 r

n−1
2 − rn−1

1 rn2 .
= rn−2

1 rn−2
2 (r31 + r32 − r21r2 − r1r

2
2)

= (−q)n−2(r1 − r2)(r
2
1 − r22)

= (−q)n−2(r1 + r2)(r1 − r2)
2

= (−q)n−2(p)(p2 + 4q)
= (−q)n−2(p3 + 4pq). 2

Theorem 2.3. For n ≥ 1, we get Lp,q,n+1Lp,q,n−1 + (−q)n(p2 + 4q) = L2
p,q,n.

Proof. For n ≥ 1, by Theorem 2.1, we have
Lp,q,n+1Lp,q,n−1 − L2

p,q,n = (−q)n−1(p2 + 4q).
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We get Lp,q,n+1Lp,q,n−1 − (−q)n−1(p2 + 4q) = L2
p,q,n.

So, Lp,q,n+1Lp,q,n−1 + (−q)n(p2 + 4q) = L2
p,q,n. 2

Theorem 2.4. For m,n ≥ 1, we get

Lp,q,mLp,q,n+1 + qLp,q,m−1Lp,q,n = (p2 + 4q)Fp,q,m+n.

Proof. For m,n ≥ 1, we have
Lp,q,mLp,q,n+1 + qLp,q,m−1Lp,q,n

= (rm1 + rm2 )(rn+1
1 + rn+1

2 ) + (−r1r2)(rm−1
1 + rm−1

2 )(rn1 + rn2 )
= rm+n+1

1 + rm+n+1
2 + rn+1

1 rm2 + rm1 r
n+1
2 − rm+n

1 r2− rm+n
2 r1− rn+1

1 rm2 − rm1 rn+1
2

= rm+n+1
1 + rm+n+1

2 − rm+n
1 r2 − rm+n

2 r1
= rm+n

1 (r1 − r2)− rm+n
2 (r1 − r2)

= (rm+n
1 − rm+n

2 )(r1 − r2)

=
rm+n
1 − rm+n

2

r1 − r2
(r1 − r2)

2

= Fp,q,m+n(p
2 + 4q). 2

Theorem 2.5. For m,n ≥ 1, we get

Lp,q,m−nLp,q,m+n − L2
p,q,m = (−q)m−n(p2 + 4q).

Proof. For m,n ≥ 1, we have
Lp,q,m−nLp,q,m+n − L2

p,q,n

= (rm−n
1 + rm−n

2 )(rm+n
1 + rm+n

2 )− (rm1 + rm2 )2

= r2m1 + rm+n
1 rm−n

2 + rm−n
1 rm+n

2 + r2m2 − r2m1 − 2rm1 r
m
2 − r2m2

= rm+n
1 rm−n

2 + rm−n
1 rm+n

2 − 2rm1 r
m
2

= rm−n
1 rm−n

2 (r2n1 − 2rn1 r
n
2 + r2n2 )

= (−q)m−n(rn1 − rn2 )
2

= (−q)m−n(rn1 − rn2 )
2 r1 − r2
r1 − r2

= (−q)m−n
√
p2 + 4q F 2

p,q,n. 2

Theorem 2.6. For m,n, k ≥ 1, we get

Lp,q,m+nLp,q,m+k − Lp,q,mLp,q,m+n+k = (−1)m+1qm(p2 + 4q)Fp,q,nFp,q,k.

Proof. For m,n ≥ 1, we have
Lp,q,m−nLp,q,m+n − L2

p,q,n

= (rm+n
1 + rm+n

2 )(rm+k
1 + rm+k

2 )− (rm1 + rm2 )(rm+n+k
1 + rm+n+k

2 )
= rm+n

1 rm+k
2 + rm+k

1 rm+n
2 − rm1 r

m+n+k
2 − rm+n+k

1 rm2
= rm1 r

m
2 (rn1 r

k
2 + rk1r

n
2 − rn+k

2 − rn+k
1 )

= (−q)m(rk2 (r
n
1 − rn2 )− rk1 (r

n
1 − rn2 ))

= (−1)(−q)m(rn1 − rn2 )(r
k
1 − rk2 )

= (−1)m+1qm(p2 + 4q)Fp,q,nFp,q,k. 2
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Theorem 2.7.

limn→∞
Lp,q,n

Lp,q,n−1
= r1.

Proof. limn→∞
Lp,q,n

Lp,q,n−1
= limn→∞

rn1 + rn2
rn−1
1 + rn−1

2

= limn→∞

rn1 (1 + (
r2
r1

)n)

rn−1
1 (1 + (

r2
r1

)n−1)

= limn→∞

r1(1 + (
r2
r1

)n)

1 + (
r2
r1

)n−1
.

Using the ratio
r2
r1

, then limn→∞(
r2
r1

)n = 0.

Next, we get limn→∞
Lp,q,n

Lp,q,n−1
= r1. 2
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