DOI QR코드

DOI QR Code

An Agent-Based Modeling Approach for Estimating Inundation Areas over Time

행위자 기반 모델링을 활용한 시간에 따른 침수 지역 예상

  • Kim, Byungil (Department of Civil Engineering, Andong National University) ;
  • Shin, Sha Chul (Department of Civil Engineering, Andong National University) ;
  • Jung, Jaehoon (Department of Photogrammetry, University of Bonn)
  • Received : 2016.01.07
  • Accepted : 2016.02.26
  • Published : 2016.07.31

Abstract

Emergency and evacuation planning is critical to reduce potential loss of life from flooding. In order to develop evacuation plans, emergency managers and decision makers require estimates of probable inundation areas and times of inundation. In this paper, we present an agent-based modeling approach that incorporates in a hydrodynamic model to estimate both of these properties. A case study is conducted modeling the failure of a dam located in Andong, South Korea. We estimate flood travel times for Manning's roughness coefficients and discharge using a coupling of the continuity equation and Manning's equation. Using the output from the hydrodynamic model and the flood travel times, the agent-based model produces flood inundation maps at each time interval. The model estimates that for two-thirds of the Andong region the time of inundation is estimated to be slightly less than three minutes. The results of this study can be used to in the development of emergency and evacuation planning for the region.

전 세계는 기상재해로 인해 막대한 경제적 손실 및 인명 피해를 입고 있다. 특히 우리나라는 홍수에 따른 침수 시 인명 피해가 빈번하다. 홍수에 대한 실효성 있는 비상대처계획을 수립하기 위해서는 시간에 따른 침수 예상 지역을 산정하는 것이 중요하다. 이에 본 연구는 안동 도심지를 대상으로 행위자 기반 모델링을 활용해 침수 예상 지역 및 시간을 산정하였다. 연속방정식과 Manning 공식을 이용해 조도계수 및 유량별 전파시간을 계산하였다. 안동댐에 가능최대홍수량이 유입되면 직하류 지점에서 발생할 수 있는 시나리오를 모델링하였다. 이 결과들에 근거해 시간대별 침수 예상 지역을 도시할 수 있는 행위자 기반 모형을 개발하였다. 이 모형을 활용해 대상 지역의 약 3분의 2가 침수되기까지 3분 가까이 소요된다는 결과를 얻을 수 있었다. 등위도 지역이라 할지라도 침수 예상 시간의 편차가 약 2배까지 발생할 수 있다는 결과 또한 얻을 수 있었다. 본 연구 결과는 대피 장소 및 경로 선정에 실효성 있는 기초 자료로 활용될 수 있을 것이다.

Keywords

References

  1. BMRB (2001). Flood Warning Dissemination: Post Event Survey, British Market Research Bureau, London, UK.
  2. Bresch, D. and Spiegel, A. (2011). A Blueprint for Managing Climate Risks in Emerging Markets, Zurich, Switzerland: Swiss Re.
  3. Chow, V. T. (1959). Open-Channel Hydraulics, McGraw-Hill Book Company, New York, NY.
  4. Dawson, R. J., Peppe, R., and Wang, M. (2011). "An agent-based model for risk-based flood incident management." Natural Hazards, 59(1), pp. 167-189. https://doi.org/10.1007/s11069-011-9745-4
  5. ECA Working Group (2009). Shaping Climate-Resilient Development: A Framework for Decision-Making, Economics of Climate Adaptation Working Group.
  6. Gilbert, N. (2008). Agent-Based Models, Sage Publications, CA, USA.
  7. Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S., Huse, G., Huth, A., Jepsen, J. U., Jorgensen, C., Mooij, W. M., Muller, B., Pe'er, G., Piou, C., Railsback, S. F., Robbins, A. M., Robbins, M. M., Rossmanith, E., Ruger, N., Strand, E., Souissi, S., Stillman, R. A., Vabo, R., Visser, U. and DeAngelis, D. L. (2006). "A standard protocol for describing individual-based and agent-based models." Ecological Modelling, 198(1-2), pp. 115-126. https://doi.org/10.1016/j.ecolmodel.2006.04.023
  8. Hong, J. B., Kim, B. S., and Yoon, S. Y. (2006). "Evaluation of accuracy of the physics based distributed hydrologic model using $Vflo^{TM}$ model." Journal of the Korean Society of Civil Engineers, 26(6B), pp. 613-622.
  9. Johnstone, W. M., Sakamoto, D., Assaf, H., and Bourban, S. (2005). "Architecture, modelling framework and validation of BC Hydro's virtual reality life safety model." In: Vrijling et al. (eds) Proceedings of the international symposium on stochastic hydraulics, 23-24 May 2005, Nijmegen, Netherlands.
  10. Kim, B., Kim, C., and Kim, D. Y. (2015a). "Agent-based evacuation simulations of road tunnels in the event of a fire." Journal of the Korean Society of Civil Engineers, 35(5), pp. 1157-1163. https://doi.org/10.12652/Ksce.2015.35.5.1157
  11. Kim, B., Shin, S. C., and Kim, D. Y. (2014). "Resilience assessment of dams' flood-control service." Journal of the Korean Society of Civil Engineers, 34(6), pp. 1919-1924. https://doi.org/10.12652/Ksce.2014.34.6.1919
  12. Kim, D.-Y., Kim, S.-B., and Kwak, H.-J. (2013). "Performance Evaluation System Framework for Natural Disaster Research and Development Projects." Korean Journal of Construction Engineering and Management, KICEM, 14(4), pp. 118-129. https://doi.org/10.6106/KJCEM.2013.14.4.118
  13. MLIT (2009). Installation and Management Guideline of Disaster Prevention Facilities for Road Tunnels, Ministry of Land, Infrastructure and Transport, Sejong-si, Republic of Korea (in Korean).
  14. MOCT (2005). Report on Improving the Hydrologic Safety of Andong Multipurpose Dam, Ministry of Construction and Transportation, Gyeonggi-do, Republic of Korea (in Korean).
  15. NEMA (2011). 2010 Disaster Yearbook, National Emergency Management Agency, Seoul, Republic of Korea (in Korean).
  16. Park, C.. Lee, S., and Suh, Y. (2007). "Development of an Automatic Generation Methodology for Digital Elevation Models using a Two-Dimensional Digital Map." Journal of the Korean Association of Geographic Information Studies, 10(3), pp. 113-122.
  17. Park, J.-H. and Kang, B.-S. (2006). "Comparison of runoff analysis between GIS-based distributed model and lumped model for flood forecast of dam watershed." Journal of the Korean Association of Geographic Information Studies, 9(3), pp. 171-182.
  18. Park, J.-H., Kang, B.-S., Lee, G.-S., and Lee. E.-R. (2007). "Flood runoff analysis using radar rainfall and $Vflo^{TM}$ model for Namgang Dam watershed." Journal of the Korean Association of Geographic Information Studies, 10(3), pp. 13-21.
  19. Parker, D. J., Tunstall, S. M., McCarthy, S. M. (2007). "New insights into the benefits of flood warnings: results from a household survey in England and Wales." Environmental Hazards, 7(3), pp. 193-210. https://doi.org/10.1016/j.envhaz.2007.08.005
  20. Shin S. C. (1996). "Runoff analysis using a distributed rainfall-runoff model." Journal of Korea Water Resources Association, 29(6), pp. 131-139.
  21. Son, J., Shin, S.-W., and Yi, J.-S. (2014). "Understanding Collaborative Working Processes within Construction Project Teams Using Agent-Based Modeling and Simulation." Korean Journal of Construction Engineering and Management, KICEM, 15(1), pp. 70-77. https://doi.org/10.6106/KJCEM.2014.15.1.070
  22. USDA (2010). Part 630 Hydrology, National Engineering Handbook, United States Department of Agriculture, Washington, DC.
  23. Vieux, B. E. and Vieux, J. E. (2002). "$Vflo^{TM}$: a real-time distributed hydrologic model." Proceedings of the Second Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV.
  24. Wilensky, U. and Rand, W. (2015). An Introduction to Agent-Based Modeling: Modeling Natural, Social and Engineered Complex Systems with NetLogo, MIT Press, Cambridge, MA.