References
- Adams, C.M., Anderson, M.G., Motto, D.G., Price, M.P., Johnson, W.A., and Welsh, M.J. (1998). Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J. Cell Biol. 140, 143-152. https://doi.org/10.1083/jcb.140.1.143
- Aigaki, T., and Fleischmann, I. (1991). Ectopic expression of sex peptide reproductive behavior of female. Neuron 7, 557-563. https://doi.org/10.1016/0896-6273(91)90368-A
- Beissbarth, T., Hyde, L., Smyth, G.K., Job, C., Boon, W.-M., Tan, S.-S., Scott, H.S., and Speed, T.P. (2004). Statistical modeling of sequencing errors in SAGE libraries. Bioinformatics 20 Suppl 1, i31-i39. https://doi.org/10.1093/bioinformatics/bth924
- Bownes, M. (1989). The roles of juvenile hormone, ecdysone and the ovary in the controlof Drosophila vitellogenesis. J. Insect Physiol. 35, 409-413. https://doi.org/10.1016/0022-1910(89)90115-7
- Bussell, J.J., Yapici, N., Zhang, S.X., Dickson, B.J., and Vosshall, L.B. (2014). Abdominal-B neurons control Drosophila virgin female receptivity. Curr. Biol. 24, 1584-1595. https://doi.org/10.1016/j.cub.2014.06.011
- Carvalho, G.B., Kapahi, P., Anderson, D.J., and Benzer, S. (2006). Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Curr. Biol. 16, 692-696. https://doi.org/10.1016/j.cub.2006.02.064
- Chen, P.S., Stumm-Zollinger, E., Aigaki, T., Balmer, J., Bienz, M., and Bohlen, P. (1988). A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54, 291-298. https://doi.org/10.1016/0092-8674(88)90192-4
- Choi, H., Lee, S., Jun, C.-D., and Park, Z.-Y. (2011). Development of an off-line capillary column IMAC phosphopeptide enrichment method for label-free phosphorylation relative quantification. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 879, 2991-2997. https://doi.org/10.1016/j.jchromb.2011.08.035
- Domanitskaya, E. V, Liu, H., Chen, S., and Kubli, E. (2007). The hydroxyproline motif of male sex peptide elicits the innate immune response in Drosophila females. FEBS J. 274, 5659-5668. https://doi.org/10.1111/j.1742-4658.2007.06088.x
- Gruntenko, N.E., Wen, D., Karpova, E.K., Adonyeva, N. V, Liu, Y., He, Q., Faddeeva, N.V, Fomin, A.S., Li, S., and Rauschenbach, I.Y. (2010). Altered juvenile hormone metabolism, reproduction and stress response in Drosophila adults with genetic ablation of the corpus allatum cells. Insect Biochem. Mol. Biol. 40, 891-897. https://doi.org/10.1016/j.ibmb.2010.09.001
- Hasemeyer, M., Yapici, N., Heberlein, U., and Dickson, B.J. (2009). Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron 61, 511-518. https://doi.org/10.1016/j.neuron.2009.01.009
- Isaac, R.E., Li, C., Leedale, A.E., and Shirras, A.D. (2010). Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proc. Biol. Sci. 277, 65-70. https://doi.org/10.1098/rspb.2009.1236
- Johns, D., and Marx, R. (1999). Inducible genetic suppression of neuronal excitability. J. Neurosci. 19, 1691-1697. https://doi.org/10.1523/JNEUROSCI.19-05-01691.1999
- Kitamoto, T. (2001). Conditional modification of behavior in Drosophila by targeted expression of a temperaturesensitive shibire allele in defined neurons. J. Neurobiol. 47, 81-92. https://doi.org/10.1002/neu.1018
- Liu, H., and Kubli, E. (2003). Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 100, 9929-9933. https://doi.org/10.1073/pnas.1631700100
- Monastirioti, M. (1996). Characterization of Drosophila tyramine hydroxylase isolation of mutant flies lacking octopamine maria. J. Neurosci. 76, 3900-3911.
- Monastirioti, M. (2003). Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster. Dev. Biol. 264, 38-49. https://doi.org/10.1016/j.ydbio.2003.07.019
- Mount, S.M., and Salz, H.K. (2000). Pre-messenger RNA processing factors in the Drosophila genome. J. Cell Biol. 150, 37-43. https://doi.org/10.1083/jcb.150.2.F37
- Nakayama, S., Kaiser, K., and Aigaki, T. (1997). Ectopic expression of sex-peptide in a variety of tissues in Drosophila females using the P[GAL4] enhancer-trap system. Mol. Gen. Genet. 254, 449-455. https://doi.org/10.1007/s004380050438
- Old, W.M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K.G., Mendoza, A., Sevinsky, J.R., Resing, K.A., and Ahn, N.G. (2005). Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics 4, 1487-1502. https://doi.org/10.1074/mcp.M500084-MCP200
- Park, S., Sonn, J.Y., Oh, Y., Lim, C., and Choe, J. (2014). SIFamide and SIFamide receptor defines a novel neuropeptide signaling to promote sleep in Drosophila. Mol. Cells 37, 295-301. https://doi.org/10.14348/molcells.2014.2371
- Peng, J., Chen, S., Busser, S., Liu, H., Honegger, T., and Kubli, E. (2005a). Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila. Curr. Biol. 15, 207-213. https://doi.org/10.1016/j.cub.2005.01.034
- Peng, J., Zipperlen, P., and Kubli, E. (2005b). Drosophila sexpeptide stimulates female innate immune system after mating via the Toll and Imd pathways. Curr. Biol. 15, 1690-1694. https://doi.org/10.1016/j.cub.2005.08.048
- Pfeiffer, B.D., Ngo, T.-T.B., Hibbard, K.L., Murphy, C., Jenett, A., Truman, J.W., and Rubin, G.M. (2010). Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735-755. https://doi.org/10.1534/genetics.110.119917
- Rezaval, C., Pavlou, H.J., Dornan, A.J., Chan, Y.-B., Kravitz, E.A., and Goodwin, S.F. (2012). Neural circuitry underlying Drosophila female postmating behavioral responses. Curr. Biol. 22, 1155-1165. https://doi.org/10.1016/j.cub.2012.04.062
- Ribeiro, C., and Dickson, B.J. (2010). Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr. Biol. 20, 1000-1005. https://doi.org/10.1016/j.cub.2010.03.061
- Rodri, O., Lo, I., Labarca, P., Zurita, M., Reynaud, E., and Gene, D. De (2006). Oviduct contraction in Drosophila is modulated by a neural network that is both, octopaminergic and glutamatergic. J. Cell. Physiol. 198, 183-198.
- Sliter, T., Sedlak, B., Baker, F., and Schooley, D. (1987). Juvenile hormone in Drosophila melanogaster: identification and titer determination during development. Insect Biochem. 17, 161-165. https://doi.org/10.1016/0020-1790(87)90156-9
- Tang, J., and Rosbash, M. (1996). Characterization of yeast U1 snRNP A protein: identification of the N-terminal RNA binding domain (RBD) binding site and evidence that the C-terminal RBD functions. RNA 2, 1058-1070.
- Wang, Q., Taliaferro, J.M., Klibaite, U., Hilgers, V., Shaevitz, J.W., and Rio, D.C. (2016). The PSI-U1 snRNP interaction regulates male mating behavior in Drosophila. Proc. Natl. Acad. Sci. USA 113, 5269-5274 https://doi.org/10.1073/pnas.1600936113
- Walker, S.J., Corrales-Carvajal, V.M., and Ribeiro, C. (2015). Postmating circuitry modulates salt taste processing to increase reproductive output in Drosophila. Curr. Biol. 25, 2621-2630. https://doi.org/10.1016/j.cub.2015.08.043
- Yang, C.-H., Belawat, P., Hafen, E., Jan, L.Y., and Jan, Y.-N. (2008). Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319, 1679-1683. https://doi.org/10.1126/science.1151842
- Yang, C.-H., Rumpf, S., Xiang, Y., Gordon, M.D., Song, W., Jan, L.Y., and Jan, Y.-N. (2009). Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron 61, 519-526. https://doi.org/10.1016/j.neuron.2008.12.021
- Yapici, N., Kim, Y., Ribeiro, C., and Dickson, B. (2008). A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451, 33-38. https://doi.org/10.1038/nature06483
- Yu, J.Y., Kanai, M.I., Demir, E., Jefferis, G.S.X.E., and Dickson, B.J. (2010). Cellular organization of the neural circuit that drives Drosophila courtship behavior. Curr. Biol. 20, 1602-1614. https://doi.org/10.1016/j.cub.2010.08.025
- Zhang, Y.Q., Rodesch, C.K., and Broadie, K. (2002). Living synaptic vesicle marker: synaptotagmin-GFP. Genesis 34, 142-145. https://doi.org/10.1002/gene.10144
- Zhong, L., Hwang, R.Y., and Tracey, W.D. (2010). Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae. Curr. Biol. 20, 429-434. https://doi.org/10.1016/j.cub.2009.12.057
- Zhu, M.Y., Wilson, R., and Leptin, M. (2005). A screen for genes that influence fibroblast growth factor signal transduction in Drosophila. Genetics 170, 767-777. https://doi.org/10.1534/genetics.104.039750
Cited by
- Peptidoglycan sensing by octopaminergic neurons modulates Drosophila oviposition vol.6, 2017, https://doi.org/10.7554/eLife.21937
- Female Genetic Contributions to Sperm Competition in Drosophila melanogaster vol.212, pp.3, 2016, https://doi.org/10.1534/genetics.119.302284
- Neuropeptide F signaling regulates parasitoid-specific germline development and egg-laying in Drosophila vol.17, pp.3, 2016, https://doi.org/10.1371/journal.pgen.1009456