DOI QR코드

DOI QR Code

A Pair of Oviduct-Born Pickpocket Neurons Important for Egg-Laying in Drosophila melanogaster

  • Lee, Hyunjin (School of Life Sciences, Gwangju Institute of Science and Technology) ;
  • Choi, Hyun Woo (School of Life Sciences, Gwangju Institute of Science and Technology) ;
  • Zhang, Chen (School of Life Sciences, Gwangju Institute of Science and Technology) ;
  • Park, Zee-Yong (School of Life Sciences, Gwangju Institute of Science and Technology) ;
  • Kim, Young-Joon (School of Life Sciences, Gwangju Institute of Science and Technology)
  • Received : 2016.05.10
  • Accepted : 2016.05.25
  • Published : 2016.07.31

Abstract

During copulation, male Drosophila transfers Sex Peptide (SP) to females where it acts on internal sensory neurons expressing pickpocket (ppk). These neurons induce a post-mating response (PMR) that includes elevated egg-laying and refractoriness to re-mating. Exactly how ppk neurons regulate the different aspects of the PMR, however, remains unclear. Here, we identify a small subset of the ppk neurons which requires expression of a pre-mRNA splicing factor CG3542 for egg-laying, but not refractoriness to mating. We identify two CG3542-ppk expressing neurons that innervate the upper oviduct and appear to be responsible for normal egg-laying. Our results suggest specific subsets of the ppk neurons are responsible for each PMR component.

Keywords

References

  1. Adams, C.M., Anderson, M.G., Motto, D.G., Price, M.P., Johnson, W.A., and Welsh, M.J. (1998). Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J. Cell Biol. 140, 143-152. https://doi.org/10.1083/jcb.140.1.143
  2. Aigaki, T., and Fleischmann, I. (1991). Ectopic expression of sex peptide reproductive behavior of female. Neuron 7, 557-563. https://doi.org/10.1016/0896-6273(91)90368-A
  3. Beissbarth, T., Hyde, L., Smyth, G.K., Job, C., Boon, W.-M., Tan, S.-S., Scott, H.S., and Speed, T.P. (2004). Statistical modeling of sequencing errors in SAGE libraries. Bioinformatics 20 Suppl 1, i31-i39. https://doi.org/10.1093/bioinformatics/bth924
  4. Bownes, M. (1989). The roles of juvenile hormone, ecdysone and the ovary in the controlof Drosophila vitellogenesis. J. Insect Physiol. 35, 409-413. https://doi.org/10.1016/0022-1910(89)90115-7
  5. Bussell, J.J., Yapici, N., Zhang, S.X., Dickson, B.J., and Vosshall, L.B. (2014). Abdominal-B neurons control Drosophila virgin female receptivity. Curr. Biol. 24, 1584-1595. https://doi.org/10.1016/j.cub.2014.06.011
  6. Carvalho, G.B., Kapahi, P., Anderson, D.J., and Benzer, S. (2006). Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Curr. Biol. 16, 692-696. https://doi.org/10.1016/j.cub.2006.02.064
  7. Chen, P.S., Stumm-Zollinger, E., Aigaki, T., Balmer, J., Bienz, M., and Bohlen, P. (1988). A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54, 291-298. https://doi.org/10.1016/0092-8674(88)90192-4
  8. Choi, H., Lee, S., Jun, C.-D., and Park, Z.-Y. (2011). Development of an off-line capillary column IMAC phosphopeptide enrichment method for label-free phosphorylation relative quantification. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 879, 2991-2997. https://doi.org/10.1016/j.jchromb.2011.08.035
  9. Domanitskaya, E. V, Liu, H., Chen, S., and Kubli, E. (2007). The hydroxyproline motif of male sex peptide elicits the innate immune response in Drosophila females. FEBS J. 274, 5659-5668. https://doi.org/10.1111/j.1742-4658.2007.06088.x
  10. Gruntenko, N.E., Wen, D., Karpova, E.K., Adonyeva, N. V, Liu, Y., He, Q., Faddeeva, N.V, Fomin, A.S., Li, S., and Rauschenbach, I.Y. (2010). Altered juvenile hormone metabolism, reproduction and stress response in Drosophila adults with genetic ablation of the corpus allatum cells. Insect Biochem. Mol. Biol. 40, 891-897. https://doi.org/10.1016/j.ibmb.2010.09.001
  11. Hasemeyer, M., Yapici, N., Heberlein, U., and Dickson, B.J. (2009). Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron 61, 511-518. https://doi.org/10.1016/j.neuron.2009.01.009
  12. Isaac, R.E., Li, C., Leedale, A.E., and Shirras, A.D. (2010). Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proc. Biol. Sci. 277, 65-70. https://doi.org/10.1098/rspb.2009.1236
  13. Johns, D., and Marx, R. (1999). Inducible genetic suppression of neuronal excitability. J. Neurosci. 19, 1691-1697. https://doi.org/10.1523/JNEUROSCI.19-05-01691.1999
  14. Kitamoto, T. (2001). Conditional modification of behavior in Drosophila by targeted expression of a temperaturesensitive shibire allele in defined neurons. J. Neurobiol. 47, 81-92. https://doi.org/10.1002/neu.1018
  15. Liu, H., and Kubli, E. (2003). Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 100, 9929-9933. https://doi.org/10.1073/pnas.1631700100
  16. Monastirioti, M. (1996). Characterization of Drosophila tyramine hydroxylase isolation of mutant flies lacking octopamine maria. J. Neurosci. 76, 3900-3911.
  17. Monastirioti, M. (2003). Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster. Dev. Biol. 264, 38-49. https://doi.org/10.1016/j.ydbio.2003.07.019
  18. Mount, S.M., and Salz, H.K. (2000). Pre-messenger RNA processing factors in the Drosophila genome. J. Cell Biol. 150, 37-43. https://doi.org/10.1083/jcb.150.2.F37
  19. Nakayama, S., Kaiser, K., and Aigaki, T. (1997). Ectopic expression of sex-peptide in a variety of tissues in Drosophila females using the P[GAL4] enhancer-trap system. Mol. Gen. Genet. 254, 449-455. https://doi.org/10.1007/s004380050438
  20. Old, W.M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K.G., Mendoza, A., Sevinsky, J.R., Resing, K.A., and Ahn, N.G. (2005). Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics 4, 1487-1502. https://doi.org/10.1074/mcp.M500084-MCP200
  21. Park, S., Sonn, J.Y., Oh, Y., Lim, C., and Choe, J. (2014). SIFamide and SIFamide receptor defines a novel neuropeptide signaling to promote sleep in Drosophila. Mol. Cells 37, 295-301. https://doi.org/10.14348/molcells.2014.2371
  22. Peng, J., Chen, S., Busser, S., Liu, H., Honegger, T., and Kubli, E. (2005a). Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila. Curr. Biol. 15, 207-213. https://doi.org/10.1016/j.cub.2005.01.034
  23. Peng, J., Zipperlen, P., and Kubli, E. (2005b). Drosophila sexpeptide stimulates female innate immune system after mating via the Toll and Imd pathways. Curr. Biol. 15, 1690-1694. https://doi.org/10.1016/j.cub.2005.08.048
  24. Pfeiffer, B.D., Ngo, T.-T.B., Hibbard, K.L., Murphy, C., Jenett, A., Truman, J.W., and Rubin, G.M. (2010). Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735-755. https://doi.org/10.1534/genetics.110.119917
  25. Rezaval, C., Pavlou, H.J., Dornan, A.J., Chan, Y.-B., Kravitz, E.A., and Goodwin, S.F. (2012). Neural circuitry underlying Drosophila female postmating behavioral responses. Curr. Biol. 22, 1155-1165. https://doi.org/10.1016/j.cub.2012.04.062
  26. Ribeiro, C., and Dickson, B.J. (2010). Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr. Biol. 20, 1000-1005. https://doi.org/10.1016/j.cub.2010.03.061
  27. Rodri, O., Lo, I., Labarca, P., Zurita, M., Reynaud, E., and Gene, D. De (2006). Oviduct contraction in Drosophila is modulated by a neural network that is both, octopaminergic and glutamatergic. J. Cell. Physiol. 198, 183-198.
  28. Sliter, T., Sedlak, B., Baker, F., and Schooley, D. (1987). Juvenile hormone in Drosophila melanogaster: identification and titer determination during development. Insect Biochem. 17, 161-165. https://doi.org/10.1016/0020-1790(87)90156-9
  29. Tang, J., and Rosbash, M. (1996). Characterization of yeast U1 snRNP A protein: identification of the N-terminal RNA binding domain (RBD) binding site and evidence that the C-terminal RBD functions. RNA 2, 1058-1070.
  30. Wang, Q., Taliaferro, J.M., Klibaite, U., Hilgers, V., Shaevitz, J.W., and Rio, D.C. (2016). The PSI-U1 snRNP interaction regulates male mating behavior in Drosophila. Proc. Natl. Acad. Sci. USA 113, 5269-5274 https://doi.org/10.1073/pnas.1600936113
  31. Walker, S.J., Corrales-Carvajal, V.M., and Ribeiro, C. (2015). Postmating circuitry modulates salt taste processing to increase reproductive output in Drosophila. Curr. Biol. 25, 2621-2630. https://doi.org/10.1016/j.cub.2015.08.043
  32. Yang, C.-H., Belawat, P., Hafen, E., Jan, L.Y., and Jan, Y.-N. (2008). Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319, 1679-1683. https://doi.org/10.1126/science.1151842
  33. Yang, C.-H., Rumpf, S., Xiang, Y., Gordon, M.D., Song, W., Jan, L.Y., and Jan, Y.-N. (2009). Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron 61, 519-526. https://doi.org/10.1016/j.neuron.2008.12.021
  34. Yapici, N., Kim, Y., Ribeiro, C., and Dickson, B. (2008). A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451, 33-38. https://doi.org/10.1038/nature06483
  35. Yu, J.Y., Kanai, M.I., Demir, E., Jefferis, G.S.X.E., and Dickson, B.J. (2010). Cellular organization of the neural circuit that drives Drosophila courtship behavior. Curr. Biol. 20, 1602-1614. https://doi.org/10.1016/j.cub.2010.08.025
  36. Zhang, Y.Q., Rodesch, C.K., and Broadie, K. (2002). Living synaptic vesicle marker: synaptotagmin-GFP. Genesis 34, 142-145. https://doi.org/10.1002/gene.10144
  37. Zhong, L., Hwang, R.Y., and Tracey, W.D. (2010). Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae. Curr. Biol. 20, 429-434. https://doi.org/10.1016/j.cub.2009.12.057
  38. Zhu, M.Y., Wilson, R., and Leptin, M. (2005). A screen for genes that influence fibroblast growth factor signal transduction in Drosophila. Genetics 170, 767-777. https://doi.org/10.1534/genetics.104.039750

Cited by

  1. Peptidoglycan sensing by octopaminergic neurons modulates Drosophila oviposition vol.6, 2017, https://doi.org/10.7554/eLife.21937
  2. Female Genetic Contributions to Sperm Competition in Drosophila melanogaster vol.212, pp.3, 2016, https://doi.org/10.1534/genetics.119.302284
  3. Neuropeptide F signaling regulates parasitoid-specific germline development and egg-laying in Drosophila vol.17, pp.3, 2016, https://doi.org/10.1371/journal.pgen.1009456