DOI QR코드

DOI QR Code

The Role of Lymphatic Niches in T Cell Differentiation

  • Capece, Tara (Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester) ;
  • Kim, Minsoo (Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester)
  • Received : 2016.04.05
  • Accepted : 2016.05.24
  • Published : 2016.07.31

Abstract

Long-term immunity to many viral and bacterial pathogens requires$ CD8^+$ memory T cell development, and the induction of long-lasting$ CD8^+$ memory T cells from a $na{\ddot{i}}ve$, undifferentiated state is a major goal of vaccine design. Formation of the memory$ CD8^+$ T cell compartment is highly dependent on the early activation cues received by $na{\ddot{i}ve}$ $CD8^+$ T cells during primary infection. This review aims to highlight the cellularity of various niches within the lymph node and emphasize recent evidence suggesting that distinct types of T cell activation and differentiation occur within different immune contexts in lymphoid organs.

Keywords

References

  1. Ahlers, J.D., Belyakov, I.M., Matsui, S., and Berzofsky, J.A. (2001). Signals delivered through TCR instruct IL-12 receptor (IL-12R). expression: IL-12 and tumor necrosis factor-alpha synergize for IL-12R expression at low antigen dose. Int. Immunol. 13, 1433-1442. https://doi.org/10.1093/intimm/13.11.1433
  2. Allam, A., Conze, D.B., Giardino Torchia, M.L., Munitic, I., Yagita, H., Sowell, R.T., Marzo, A.L., and Ashwell, J.D. (2009). The $CD8^+$ memory T-cell state of readiness is actively maintained and reversible. Blood 114, 2121-2130. https://doi.org/10.1182/blood-2009-05-220087
  3. Alzona, M., Jack, H.M., Fisher, R.I., and Ellis, T.M. (1994). CD30 defines a subset of activated human T cells that produce IFNgamma and IL-5 and exhibit enhanced B cell helper activity. J. Immunol. 153, 2861-2867.
  4. Andressen, C., Arnhold, S., Puschmann, M., Bloch, W., Hescheler, J., Fassler, R., and Addicks, K. (1998). Beta1 integrin deficiency impairs migration and differentiation of mouse embryonic stem cell derived neurons. Neurosci. Lett. 251, 165-168. https://doi.org/10.1016/S0304-3940(98)00535-7
  5. Ansel, K.M., Ngo, V.N., Hyman, P.L., Luther, S.A., Forster, R., Sedgwick, J.D., Browning, J.L., Lipp, M., and Cyster, J.G. (2000). A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309-314. https://doi.org/10.1038/35018581
  6. Azar, G.A., Lemaitre, F., Robey, E.A., and Bousso, P. (2010). Subcellular dynamics of T cell immunological synapses and kinapses in lymph nodes. Proc. Natl. Acad. Sci. USA 107, 3675-3680. https://doi.org/10.1073/pnas.0905901107
  7. Bajenoff, M., Egen, J.G., Koo, L.Y., Laugier, J.P., Brau, F., Glaichenhaus, N., and Germain, R.N. (2006). Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989-1001. https://doi.org/10.1016/j.immuni.2006.10.011
  8. Bannard, O., Kraman, M., and Fearon, D.T. (2009). Secondary replicative function of $CD8^+$ T cells that had developed an effector phenotype. Science 323, 505-509. https://doi.org/10.1126/science.1166831
  9. Barbi, J., Oghumu, S., Lezama-Davila, C.M., and Satoskar, A.R. (2007). IFN-gamma and STAT1 are required for efficient induction of CXC chemokine receptor 3 (CXCR3) on CD4+ but not $CD8^+$ T cells. Blood 110, 2215-2216. https://doi.org/10.1182/blood-2007-03-081307
  10. Baumgartner, C.K., Yagita, H., and Malherbe, L.P. (2012). A TCR affinity threshold regulates memory CD4 T cell differentiation following vaccination. J. Immunol. 189, 2309-2317. https://doi.org/10.4049/jimmunol.1200453
  11. Benitah, S.A., Frye, M., Glogauer, M., and Watt, F.M. (2005). Stem cell depletion through epidermal deletion of Rac1. Science 309, 933-935. https://doi.org/10.1126/science.1113579
  12. Benvenuti, F., Lagaudriere-Gesbert, C., Grandjean, I., Jancic, C., Hivroz, C., Trautmann, A., Lantz, O., and Amigorena, S. (2004). Dendritic cell maturation controls adhesion, synapse formation, and the duration of the interactions with naive T lymphocytes. J. Immunol. 172, 292-301. https://doi.org/10.4049/jimmunol.172.1.292
  13. Berney, C., Herren, S., Power, C.A., Gordon, S., Martinez-Pomares, L., and Kosco-Vilbois, M.H. (1999). A member of the dendritic cell family that enters B cell follicles and stimulates primary antibody responses identified by a mannose receptor fusion protein. J. Exp. Med. 190, 851-860. https://doi.org/10.1084/jem.190.6.851
  14. Beuneu, H., Garcia, Z., and Bousso, P. (2006). Cutting edge: cognate CD4 help promotes recruitment of antigen-specific CD8 T cells around dendritic cells. J. Immunol. 177, 1406-1410. https://doi.org/10.4049/jimmunol.177.3.1406
  15. Bevan, M.J., and Fink, P.J. (2001). The CD8 response on autopilot. Nat. Immunol. 2, 381-382. https://doi.org/10.1038/87676
  16. Blattman, J.N., Cheng, L.E., and Greenberg, P.D. (2002). CD8(+) T cell responses: it's all downhill after their prime. Nat. Immunol. 3, 601-602. https://doi.org/10.1038/ni0702-601
  17. Bose, T.O., Pham, Q.M., Jellison, E.R., Mouries, J., Ballantyne, C.M., and Lefrancois, L. (2013). CD11a regulates effector CD8 T cell differentiation and central memory development in response to infection with Listeria monocytogenes. Infect. Immun. 81, 1140-1151. https://doi.org/10.1128/IAI.00749-12
  18. Bousso, P., and Robey, E. (2003). Dynamics of $CD8^+$ T cell priming by dendritic cells in intact lymph nodes. Nat. Immunol. 4, 579-585.
  19. Breitfeld, D., Ohl, L., Kremmer, E., Ellwart, J., Sallusto, F., Lipp, M., and Forster, R. (2000). Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545-1552. https://doi.org/10.1084/jem.192.11.1545
  20. Buentke, E., Mathiot, A., Tolaini, M., Di Santo, J., Zamoyska, R., and Seddon, B. (2006). Do CD8 effector cells need IL-7R expression to become resting memory cells? Blood 108, 1949-1956. https://doi.org/10.1182/blood-2006-04-016857
  21. Cannons, J.L., Lau, P., Ghumman, B., DeBenedette, M.A., Yagita, H., Okumura, K., and Watts, T.H. (2001). 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J. Immunol. 167, 1313-1324. https://doi.org/10.4049/jimmunol.167.3.1313
  22. Carrasco, Y.R., and Batista, F.D. (2007). B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27, 160-171. https://doi.org/10.1016/j.immuni.2007.06.007
  23. Castellino, F., and Germain, R.N. (2006). Cooperation between CD4+ and $CD8^+$ T cells: when, where, and how. Ann. Rev. Immunol. 24, 519-540. https://doi.org/10.1146/annurev.immunol.23.021704.115825
  24. Castellino, F., Huang, A.Y., Altan-Bonnet, G., Stoll, S., Scheinecker, C., and Germain, R.N. (2006). Chemokines enhance immunity by guiding naive $CD8^+$ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440, 890-895. https://doi.org/10.1038/nature04651
  25. Chang, J.T., Palanivel, V.R., Kinjyo, I., Schambach, F., Intlekofer, A.M., Banerjee, A., Longworth, S.A., Vinup, K.E., Mrass, P., Oliaro, J., et al. (2007). Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687-1691. https://doi.org/10.1126/science.1139393
  26. Chtanova, T., Han, S.J., Schaeffer, M., van Dooren, G.G., Herzmark, P., Striepen, B., and Robey, E.A. (2009). Dynamics of T cell, antigen-presenting cell, and pathogen interactions during recall responses in the lymph node. Immunity 31, 342-355. https://doi.org/10.1016/j.immuni.2009.06.023
  27. Chung, K., and Deisseroth, K. (2013). CLARITY for mapping the nervous system. Nat. Methods 10, 508-513. https://doi.org/10.1038/nmeth.2481
  28. Chung, K., Wallace, J., Kim, S.Y., Kalyanasundaram, S., Andalman, A.S., Davidson, T.J., Mirzabekov, J.J., Zalocusky, K.A., Mattis, J., Denisin, A.K., et al. (2013). Structural and molecular interrogation of intact biological systems. Nature 497, 332-337. https://doi.org/10.1038/nature12107
  29. Chyou, S., Benahmed, F., Chen, J., Kumar, V., Tian, S., Lipp, M., and Lu, T.T. (2011). Coordinated regulation of lymph node vascular-stromal growth first by CD11c+ cells and then by T and B cells. J. Immunol. 187, 5558-5567. https://doi.org/10.4049/jimmunol.1101724
  30. Cohen, J.N., Guidi, C.J., Tewalt, E.F., Qiao, H., Rouhani, S.J., Ruddell, A., Farr, A.G., Tung, K.S., and Engelhard, V.H. (2010). Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J. Exp. Med. 207, 681-688. https://doi.org/10.1084/jem.20092465
  31. Cox, M.A., Barnum, S.R., Bullard, D.C., and Zajac, A.J. (2013). ICAM-1-dependent tuning of memory CD8 T-cell responses following acute infection. Proc. Natl. Acad. Sci. USA 110, 1416-1421. https://doi.org/10.1073/pnas.1213480110
  32. Cui, W., and Kaech, S.M. (2010). Generation of effector $CD8^+$ T cells and their conversion to memory T cells. Immunol. Rev. 236, 151-166. https://doi.org/10.1111/j.1600-065X.2010.00926.x
  33. Curtsinger, J.M., Schmidt, C.S., Mondino, A., Lins, D.C., Kedl, R.M., Jenkins, M.K., and Mescher, M.F. (1999). Inflammatory cytokines provide a third signal for activation of naive $CD4^+$ and $CD8^+$ T cells. J. Immunol. 162, 3256-3262.
  34. Eickhoff, S., Brewitz, A., Gerner, M.Y., Klauschen, F., Komander, K., Hemmi, H., Garbi, N., Kaisho, T., Germain, R.N., and Kastenmuller, W. (2015). Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell 162, 1322-1337. https://doi.org/10.1016/j.cell.2015.08.004
  35. Faroudi, M., Zaru, R., Paulet, P., Muller, S., and Valitutti, S. (2003). Cutting edge: T lymphocyte activation by repeated immunological synapse formation and intermittent signaling. J. Immunol. 171, 1128-1132. https://doi.org/10.4049/jimmunol.171.3.1128
  36. Fletcher, A.L., Lukacs-Kornek, V., Reynoso, E.D., Pinner, S.E., Turley, S.J. (2010). Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J. Exp. Med. 207, 689-697. https://doi.org/10.1084/jem.20092642
  37. Fooksman, D.R., Vardhana, S., Vasiliver-Shamis, G., Liese, J., Blair, D.A., Waite, J., Sacristan, C., Victora, G.D., Zanin-Zhorov, A., and Dustin, M.L. (2010). Functional anatomy of T cell activation and synapse formation. Ann. Rev. Immunol. 28, 79-105. https://doi.org/10.1146/annurev-immunol-030409-101308
  38. Forster, R., Schubel, A., Breitfeld, D., Kremmer, E., Renner-Muller, I., Wolf, E., and Lipp, M. (1999). CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23-33. https://doi.org/10.1016/S0092-8674(00)80059-8
  39. Forster, R., Braun, A., and Worbs, T. (2012). Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends Immunol. 33, 271-280. https://doi.org/10.1016/j.it.2012.02.007
  40. Frye, M., Gardner, C., Li, E.R., Arnold, I., and Watt, F.M. (2003). Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development 130, 2793-2808. https://doi.org/10.1242/dev.00462
  41. Fuchs, E., Tumbar, T., and Guasch, G. (2004). Socializing with the neighbors: stem cells and their niche. Cell 116, 769-778. https://doi.org/10.1016/S0092-8674(04)00255-7
  42. Garcia, Z., Pradelli, E., Celli, S., Beuneu, H., Simon, A., and Bousso, P. (2007). Competition for antigen determines the stability of T cell-dendritic cell interactions during clonal expansion. Proc. Natl. Acad. Sci. USA 104, 4553-4558. https://doi.org/10.1073/pnas.0610019104
  43. Gattinoni, L., Zhong, X.S., Palmer, D.C., Ji, Y., Hinrichs, C.S., Yu, Z., Wrzesinski, C., Boni, A., Cassard, L., Garvin, L.M., et al. (2009). Wnt signaling arrests effector T cell differentiation and generates $CD8^+$ memory stem cells. Nat. Med. 15, 808-813. https://doi.org/10.1038/nm.1982
  44. Gattinoni, L., Lugli, E., Ji, Y., Pos, Z., Paulos, C.M., Quigley, M.F., Almeida, J.R., Gostick, E., Yu, Z., Carpenito, C., et al. (2011). A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290-1297. https://doi.org/10.1038/nm.2446
  45. Ghosh, S., Chackerian, A.A., Parker, C.M., Ballantyne, C.M., and Behar, S.M. (2006). The LFA-1 adhesion molecule is required for protective immunity during pulmonary Mycobacterium tuberculosis infection. J. Immunol. 176, 4914-4922. https://doi.org/10.4049/jimmunol.176.8.4914
  46. Girard, J.P., and Springer, T.A. (1995). High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunology Today 16, 449-457. https://doi.org/10.1016/0167-5699(95)80023-9
  47. Girard, J.P., Moussion, C., and Forster, R. (2012). HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762-773. https://doi.org/10.1038/nri3298
  48. Goulas, S., Conder, R., and Knoblich, J.A. (2012). The Par complex and integrins direct asymmetric cell division in adult intestinal stem cells. Cell Stem Cell 11, 529-540. https://doi.org/10.1016/j.stem.2012.06.017
  49. Grakoui, A., Bromley, S.K., Sumen, C., Davis, M.M., Shaw, A.S., Allen, P.M., and Dustin, M.L. (1999). The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221-227. https://doi.org/10.1126/science.285.5425.221
  50. Gretz, J.E., Anderson, A.O., and Shaw, S. (1997). Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol. Rev. 156, 11-24. https://doi.org/10.1111/j.1600-065X.1997.tb00955.x
  51. Gretz, J.E., Norbury, C.C., Anderson, A.O., Proudfoot, A.E., and Shaw, S. (2000). Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J. Exp. Med. 192, 1425-1440. https://doi.org/10.1084/jem.192.10.1425
  52. Grigorova, I.L., Schwab, S.R., Phan, T.G., Pham, T.H., Okada, T., and Cyster, J.G. (2009). Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nat. Immunol. 10, 58-65. https://doi.org/10.1038/ni.1682
  53. Grigorova, I.L., Panteleev, M., and Cyster, J.G. (2010). Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure. Proc. Natl. Acad. Sci. USA 107, 20447-20452. https://doi.org/10.1073/pnas.1009968107
  54. Groom, J.R., Richmond, J., Murooka, T.T., Sorensen, E.W., Sung, J.H., Bankert, K., von Andrian, U.H., Moon, J.J., Mempel, T.R., and Luster, A.D. (2012). CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity 37, 1091-1103. https://doi.org/10.1016/j.immuni.2012.08.016
  55. Gui, L., and Homer, H. (2012). Spindle assembly checkpoint signalling is uncoupled from chromosomal position in mouse oocytes. Development 139, 1941-1946. https://doi.org/10.1242/dev.078352
  56. Gunzer, M., Schafer, A., Borgmann, S., Grabbe, S., Zanker, K.S., Brocker, E.B., Kampgen, E., and Friedl, P. (2000). Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 13, 323-332. https://doi.org/10.1016/S1074-7613(00)00032-7
  57. Haining, W.N., Ebert, B.L., Subrmanian, A., Wherry, E.J., Eichbaum, Q., Evans, J.W., Mak, R., Rivoli, S., Pretz, J., Angelosanto, J., et al. (2008). Identification of an evolutionarily conserved transcriptional signature of CD8 memory differentiation that is shared by T and B cells. J. Immunol. 181, 1859-1868. https://doi.org/10.4049/jimmunol.181.3.1859
  58. Hand, T.W., Cui, W., Jung, Y.W., Sefik, E., Joshi, N.S., Chandele, A., Liu, Y., and Kaech, S.M. (2010). Differential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survival. Proc. Natl. Acad. Sci. USA 107, 16601-16606. https://doi.org/10.1073/pnas.1003457107
  59. Harrington, L.E., Janowski, K.M., Oliver, J.R., Zajac, A.J., and Weaver, C.T. (2008). Memory CD4 T cells emerge from effector T-cell progenitors. Nature 452, 356-360. https://doi.org/10.1038/nature06672
  60. Heffner, M. and Fearon, D.T. (2007). Loss of T cell receptor-induced Bmi-1 in the KLRG1(+) senescent CD8(+) T lymphocyte. Proc. Natl. Acad. Sci. USA 104, 13414-13419. https://doi.org/10.1073/pnas.0706040104
  61. Hendriks, J., Xiao, Y., and Borst, J. (2003). CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J. Exp. Med. 198, 1369-1380. https://doi.org/10.1084/jem.20030916
  62. Henrickson, S.E., Mempel, T.R., Mazo, I.B., Liu, B., Artyomov, M.N., Zheng, H., Peixoto, A., Flynn, M.P., Senman, B., Junt, T., et al. (2008). T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat. Immunol. 9, 282-291. https://doi.org/10.1038/ni1559
  63. Hickman, H.D., Takeda, K., Skon, C.N., Murray, F.R., Hensley, S.E., Loomis, J., Barber, G.N., Bennink, J.R., and Yewdell, J.W. (2008). Direct priming of antiviral $CD8^+$ T cells in the peripheral interfollicular region of lymph nodes. Nat. Immunol. 9, 155-165. https://doi.org/10.1038/ni1557
  64. Hickman, H.D., Li, L., Reynoso, G.V., Rubin, E.J., Skon, C.N., Mays, J.W., Gibbs, J., Schwartz, O., Bennink, J.R., and Yewdell, J.W. (2011). Chemokines control naive $CD8^+$ T cell selection of optimal lymph node antigen presenting cells. J. Exp. Med. 208, 2511-2524. https://doi.org/10.1084/jem.20102545
  65. Hickman, H.D., Reynoso, G.V., Ngudiankama, B.F., Cush, S.S., Gibbs, J., Bennink, J.R., and Yewdell, J.W. (2015). CXCR3 chemokine receptor enables local CD8(+) T cell migration for the destruction of virus-infected cells. Immunity 42, 524-537. https://doi.org/10.1016/j.immuni.2015.02.009
  66. Hirsch, E., Iglesias, A., Potocnik, A.J., Hartmann, U., and Fassler, R. (1996). Impaired migration but not differentiation of haematopoietic stem cells in the absence of beta1 integrins. Nature 380, 171-175. https://doi.org/10.1038/380171a0
  67. Hor, J.L., Whitney, P.G., Zaid, A., Brooks, A.G., Heath, W.R., and Mueller, S.N. (2015). Spatiotemporally Distinct Interactions with Dendritic Cell Subsets Facilitates $CD4^+$ and $CD8^+$ T Cell Activation to Localized Viral Infection. Immunity 43, 554-565. https://doi.org/10.1016/j.immuni.2015.07.020
  68. Hu, J.K., Kagari, T., Clingan, J.M., and Matloubian, M. (2011). Expression of chemokine receptor CXCR3 on T cells affects the balance between effector and memory CD8 T-cell generation. Proc. Natl. Acad. Sci. USA 108, E118-127. https://doi.org/10.1073/pnas.1101881108
  69. Hugues, S., Fetler, L., Bonifaz, L., Helft, J., Amblard, F., and Amigorena, S. (2004). Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nat. Immunol. 5, 1235-1242. https://doi.org/10.1038/ni1134
  70. Hugues, S., Scholer, A., Boissonnas, A., Nussbaum, A., Combadiere, C., Amigorena, S., and Fetler, L. (2007a). Dynamic imaging of chemokine-dependent $CD8^+$ T cell help for $CD8^+$ T cell responses. Nat. Immunol. 8, 921-930. https://doi.org/10.1038/ni1495
  71. Hugues, S., Scholer, A., Boissonnas, A., Nussbaum, A., Combadiere, C., Amigorena, S., and Fetler, L. (2007b). Dynamic imaging of chemokine-dependent $CD8^+$ T cell help for $CD8^+$ T cell responses. Nat. Immunol. 8, 921-930. https://doi.org/10.1038/ni1495
  72. Huppa, J.B., Gleimer, M., Sumen, C., and Davis, M.M. (2003). Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat. Immunol. 4, 749-755.
  73. Huster, K.M., Stemberger, C., Gasteiger, G., Kastenmuller, W., Drexler, I., and Busch, D.H. (2009). Cutting edge: memory CD8 T cell compartment grows in size with immunological experience but nevertheless can lose function. J. Immunol. 183, 6898-6902. https://doi.org/10.4049/jimmunol.0902454
  74. Iezzi, G., Karjalainen, K., and Lanzavecchia, A. (1998). The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89-95. https://doi.org/10.1016/S1074-7613(00)80461-6
  75. Jones, D.L., and Wagers, A.J. (2008). No place like home: anatomy and function of the stem cell niche. Nat. Rev. Mol. Cell Biol. 9, 11-21.
  76. Joshi, N.S., and Kaech, S.M. (2008). Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J. Immunol. 180, 1309-1315. https://doi.org/10.4049/jimmunol.180.3.1309
  77. Joshi, N.S., Cui, W., Chandele, A., Lee, H.K., Urso, D.R., Hagman, J., Gapin, L., and Kaech, S.M. (2007). Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281-295. https://doi.org/10.1016/j.immuni.2007.07.010
  78. Junt, T., Fink, K., Forster, R., Senn, B., Lipp, M., Muramatsu, M., Zinkernagel, R.M., Ludewig, B. and Hengartner, H. (2005). CXCR5-dependent seeding of follicular niches by B and Th cells augments antiviral B cell responses. J. Immunol. 175, 7109-7116. https://doi.org/10.4049/jimmunol.175.11.7109
  79. Junt, T., Moseman, E.A., Iannacone, M., Massberg, S., Lang, P.A., Boes, M., Fink, K., Henrickson, S.E., Shayakhmetov, D.M., Di Paolo, N.C., et al. (2007). Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110-114. https://doi.org/10.1038/nature06287
  80. Kaech, S.M., and Ahmed, R. (2001). Memory $CD8^+$ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol. 2, 415-422. https://doi.org/10.1038/87720
  81. Kaech, S.M., Tan, J.T., Wherry, E.J., Konieczny, B.T., Surh, C.D., and Ahmed, R. (2003). Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191-1198. https://doi.org/10.1038/ni1009
  82. Kalia, V., Sarkar, S., and Ahmed, R. (2010). CD8 T-cell memory differentiation during acute and chronic viral infections. Adv. Exp. Med. Biol. 684, 79-95. https://doi.org/10.1007/978-1-4419-6451-9_7
  83. Kastenmuller, W., Brandes, M., Wang, Z., Herz, J., Egen, J.G., and Germain, R.N. (2013). Peripheral prepositioning and local CXCL9 chemokine-mediated guidance orchestrate rapid memory $CD8^+$ T cell responses in the lymph node. Immunity 38, 502-513. https://doi.org/10.1016/j.immuni.2012.11.012
  84. Katakai, T., Suto, H., Sugai, M., Gonda, H., Togawa, A., Suematsu, S., Ebisuno, Y., Katagiri, K., Kinashi, T., and Shimizu, A. (2008). Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs. J. Immunol. 181, 6189-6200. https://doi.org/10.4049/jimmunol.181.9.6189
  85. Kelly, R.H. (1975). Functional anatomy of lymph nodes. I. The paracortical cords. Int. Arch. Allergy Appl. Immunol. 48, 836-849. https://doi.org/10.1159/000231371
  86. Khader, S.A., Bell, G.K., Pearl, J.E., Fountain, J.J., Rangel-Moreno, J., Cilley, G.E., Shen, F., Eaton, S.M., Gaffen, S.L., Swain, S.L., et al. (2007). IL-23 and IL-17 in the establishment of protective pulmonary $CD4^+$ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 8, 369-377.
  87. Khan, O., Headley, M., Gerard, A., Wei, W., Liu, L., and Krummel, M.F. (2011). Regulation of T cell priming by lymphoid stroma. PLoS One 6, e26138. https://doi.org/10.1371/journal.pone.0026138
  88. Knoblich, J.A. (2008). Mechanisms of asymmetric stem cell division. Cell 132, 583-597. https://doi.org/10.1016/j.cell.2008.02.007
  89. Kuka, M., and Iannacone, M. (2014). The role of lymph node sinus macrophages in host defense. Ann. N Y Acad. Sci. 1319, 38-46. https://doi.org/10.1111/nyas.12387
  90. Lindquist, R.L., Shakhar, G., Dudziak, D., Wardemann, H., Eisenreich, T., Dustin, M.L., and Nussenzweig, M.C. (2004). Visualizing dendritic cell networks in vivo. Nat. Immunol. 5, 1243-1250. https://doi.org/10.1038/ni1139
  91. Link, A., Vogt, T.K., Favre, S., Britschgi, M.R., Acha-Orbea, H., Hinz, B., Cyster, J.G., and Luther, S.A. (2007). Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255-1265. https://doi.org/10.1038/ni1513
  92. Lohning, M., Hegazy, A.N., Pinschewer, D.D., Busse, D., Lang, K.S., Hofer, T., Radbruch, A., Zinkernagel, R.M., and Hengartner, H. (2008). Long-lived virus-reactive memory T cells generated from purified cytokine-secreting T helper type 1 and type 2 effectors. J. Exp. Med. 205, 53-61. https://doi.org/10.1084/jem.20071855
  93. Lu, P., Youngblood, B.A., Austin, J.W., Mohammed, A.U., Butler, R., Ahmed, R., and Boss, J.M. (2014). Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection. J. Exp. Med. 211, 515-527. https://doi.org/10.1084/jem.20130208
  94. Lukacs-Kornek, V., Malhotra, D., Fletcher, A.L., Acton, S.E., Elpek, K.G., Tayalia, P., Collier, A.R., and Turley, S.J. (2011). Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat. Immunol. 12, 1096-1104. https://doi.org/10.1038/ni.2112
  95. Luther, S.A., Tang, H.L., Hyman, P.L., Farr, A.G., and Cyster, J.G. (2000). Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl. Acad. Sci. USA 97, 12694-12699. https://doi.org/10.1073/pnas.97.23.12694
  96. M'Rini, C., Cheng, G., Schweitzer, C., Cavanagh, L.L., Palframan, R.T., Mempel, T.R., Warnock, R.A., Lowe, J.B., Quackenbush, E.J., and von Andrian, U.H. (2003). A novel endothelial L-selectin ligand activity in lymph node medulla that is regulated by alpha(1,3)-fucosyltransferase-IV. J. Exp. Med. 198, 1301-1312. https://doi.org/10.1084/jem.20030182
  97. Malhotra, D., Fletcher, A.L., Astarita, J., Lukacs-Kornek, V., Tayalia, P., Gonzalez, S.F., Elpek, K.G., Chang, S.K., Knoblich, K., Hemler, M.E., et al. (2012). Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat. Immunol. 13, 499-510.
  98. Marchesi, V.T., and Gowans, J.L. (1964). The Migration of Lymphocytes through the Endothelium of Venules in Lymph Nodes: An Electron Microscope Study. Proc. R Soc. Lond. B Biol. Sci. 159, 283-290. https://doi.org/10.1098/rspb.1964.0002
  99. Maris, C.H., Miller, J.D., Altman, J.D., and Jacob, J. (2003). A transgenic mouse model genetically tags all activated CD8 T cells. J. Immunol. 171, 2393-2401. https://doi.org/10.4049/jimmunol.171.5.2393
  100. Masopust, D., Vezys, V., Usherwood, E.J., Cauley, L.S., Olson, S., Marzo, A.L., Ward, R.L., Woodland, D.L., and Lefrancois, L. (2004). Activated primary and memory CD8 T cells migrate to nonlymphoid tissues regardless of site of activation or tissue of origin. J. Immunol. 172, 4875-4882. https://doi.org/10.4049/jimmunol.172.8.4875
  101. Mempel, T.R., Henrickson, S.E., and Von Andrian, U.H. (2004). Tcell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154-159. https://doi.org/10.1038/nature02238
  102. Metchat, A., Eguren, M., Hossain, J.M., Politi, A.Z., Huet, S., and Ellenberg, J. (2015). An actin-dependent spindle position checkpoint ensures the asymmetric division in mouse oocytes. Nat. Commun. 6, 7784. https://doi.org/10.1038/ncomms8784
  103. Miller, M.J., Wei, S.H., Parker, I., and Cahalan, M.D. (2002). Twophoton imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869-1873. https://doi.org/10.1126/science.1070051
  104. Miller, M.J., Hejazi, A.S., Wei, S.H., Cahalan, M.D., and Parker, I. (2004a). T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl. Acad. Sci. USA 101, 998-1003. https://doi.org/10.1073/pnas.0306407101
  105. Miller, M.J., Safrina, O., Parker, I., and Cahalan, M.D. (2004b). Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med. 200, 847-856. https://doi.org/10.1084/jem.20041236
  106. Mionnet, C., Sanos, S.L., Mondor, I., Jorquera, A., Laugier, J.P., Germain, R.N., and Bajenoff, M. (2011). High endothelial venules as traffic control points maintaining lymphocyte population homeostasis in lymph nodes. Blood 118, 6115-6122. https://doi.org/10.1182/blood-2011-07-367409
  107. Mondino, A., Khoruts, A., and Jenkins, M.K. (1996). The anatomy of T-cell activation and tolerance. Proc. Natl. Acad. Sci. USA 93, 2245-2252. https://doi.org/10.1073/pnas.93.6.2245
  108. Moreau, H.D., Lemaitre, F., Terriac, E., Azar, G., Piel, M., Lennon-Dumenil, A.M., and Bousso, P. (2012). Dynamic in situ cytometry uncovers T cell receptor signaling during immunological synapses and kinapses in vivo. Immunity 37, 351-363. https://doi.org/10.1016/j.immuni.2012.05.014
  109. Moreau, H.D., Lemaitre, F., Garrod, K.R., Garcia, Z., Lennon-Dumenil, A.M., and Bousso, P. (2015). Signal strength regulates antigen-mediated T-cell deceleration by distinct mechanisms to promote local exploration or arrest. Proc. Natl. Acad. Sci. USA 112, 12151-12156. https://doi.org/10.1073/pnas.1506654112
  110. Morrison, S.J., and Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441, 1068-1074. https://doi.org/10.1038/nature04956
  111. Murray, E., Cho, J.H., Goodwin, D., Ku, T., Swaney, J., Kim, S.Y., Choi, H., Park, Y.G., Park, J.Y., Hubbert, A., et al. (2015). Simple, Scalable Proteomic Imaging for High-Dimensional Profiling of Intact Systems. Cell 163, 1500-1514. https://doi.org/10.1016/j.cell.2015.11.025
  112. Neumuller, R.A., and Knoblich, J.A. (2009). Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev. 23, 2675-2699. https://doi.org/10.1101/gad.1850809
  113. Okada, T., Ngo, V.N., Ekland, E.H., Forster, R., Lipp, M., Littman, D.R., and Cyster, J.G. (2002). Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J. Exp. Med. 196, 65-75. https://doi.org/10.1084/jem.20020201
  114. Parameswaran, N., Suresh, R., Bal, V., Rath, S., and George, A. (2005). Lack of ICAM-1 on APCs during T cell priming leads to poor generation of central memory cells. J. Immunol. 175, 2201-2211. https://doi.org/10.4049/jimmunol.175.4.2201
  115. Pearce, E.L., and Shen, H. (2007). Generation of CD8 T cell memory is regulated by IL-12. J. Immunol. 179, 2074-2081. https://doi.org/10.4049/jimmunol.179.4.2074
  116. Petridou, N.I., and Skourides, P.A. (2016). A ligand-independent integrin beta1 mechanosensory complex guides spindle orientation. Nat. Commun. 7, 10899. https://doi.org/10.1038/ncomms10899
  117. Phan, T.G., Grigorova, I., Okada, T., and Cyster, J.G. (2007). Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat. Immunol. 8, 992-1000. https://doi.org/10.1038/ni1494
  118. Phan, T.G., Green, J.A., Gray, E.E., Xu, Y., and Cyster, J.G. (2009). Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat. Immunol. 10, 786-793. https://doi.org/10.1038/ni.1745
  119. Pryshchep, S., Zarnitsyna, V.I., Hong, J., Evavold, B.D., and Zhu, C. (2014). Accumulation of serial forces on TCR and CD8 frequently applied by agonist antigenic peptides embedded in MHC molecules triggers calcium in T cells. J. Immunol. 193, 68-76. https://doi.org/10.4049/jimmunol.1303436
  120. Redmond, W.L., Ruby, C.E., and Weinberg, A.D. (2009). The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit. Rev. Immunol. 29, 187-201. https://doi.org/10.1615/CritRevImmunol.v29.i3.10
  121. Rohr, J.C., Gerlach, C., Kok, L., and Schumacher, T.N. (2014). Single cell behavior in T cell differentiation. Trends Immunol. 35, 170-177. https://doi.org/10.1016/j.it.2014.02.006
  122. Roozendaal, R., Mempel, T.R., Pitcher, L.A., Gonzalez, S.F., Verschoor, A., Mebius, R.E., von Andrian, U.H., and Carroll, M.C. (2009). Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30, 264-276. https://doi.org/10.1016/j.immuni.2008.12.014
  123. Sallusto, F., Lenig, D., Forster, R., Lipp, M., and Lanzavecchia, A. (1999). Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708-712. https://doi.org/10.1038/44385
  124. Sarkar, S., Kalia, V., Haining, W.N., Konieczny, B.T., Subramaniam, S., and Ahmed, R. (2008). Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J. Exp. Med. 205, 625-640. https://doi.org/10.1084/jem.20071641
  125. Schaerli, P., Willimann, K., Lang, A.B., Lipp, M., Loetscher, P., and Moser, B. (2000). CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553-1562. https://doi.org/10.1084/jem.192.11.1553
  126. Scholer, A., Hugues, S., Boissonnas, A., Fetler, L., and Amigorena, S. (2008). Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine $CD8^+$ T cell memory. Immunity 28, 258-270. https://doi.org/10.1016/j.immuni.2007.12.016
  127. Schulz, E.G., Mariani, L., Radbruch, A., and Hofer, T. (2009). Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12. Immunity 30, 673-683. https://doi.org/10.1016/j.immuni.2009.03.013
  128. Schurich, A., Pallett, L.J., Lubowiecki, M., Singh, H.D., Gill, U.S., Kennedy, P.T., Nastouli, E., Tanwar, S., Rosenberg, W., and Maini, M.K. (2013). The third signal cytokine IL-12 rescues the anti-viral function of exhausted HBV-specific CD8 T cells. PLoS Pathogens 9, e1003208. https://doi.org/10.1371/journal.ppat.1003208
  129. Seder, R.A., Darrah, P.A., and Roederer, M. (2008). T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol. 8, 247-258. https://doi.org/10.1038/nri2274
  130. Seth, S., Oberdorfer, L., Hyde, R., Hoff, K., Thies, V., Worbs, T., Schmitz, S., and Forster, R. (2011). CCR7 essentially contributes to the homing of plasmacytoid dendritic cells to lymph nodes under steady-state as well as inflammatory conditions. J. Immunol. 186, 3364-3372. https://doi.org/10.4049/jimmunol.1002598
  131. Siegert, S., Huang, H.Y., Yang, C.Y., Scarpellino, L., Carrie, L., Essex, S., Nelson, P.J., Heikenwalder, M., Acha-Orbea, H., Buckley, C.D., et al. (2011). Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide. PLoS One 6, e27618. https://doi.org/10.1371/journal.pone.0027618
  132. Sinha, R.K., Park, C., Hwang, I.Y., Davis, M.D., and Kehrl, J.H. (2009). B lymphocytes exit lymph nodes through cortical lymphatic sinusoids by a mechanism independent of sphingosine-1-phosphate-mediated chemotaxis. Immunity 30, 434-446. https://doi.org/10.1016/j.immuni.2008.12.018
  133. Sixt, M., Kanazawa, N., Selg, M., Samson, T., Roos, G., Reinhardt, D.P., Pabst, R., Lutz, M.B., and Sorokin, L. (2005). The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19-29. https://doi.org/10.1016/j.immuni.2004.11.013
  134. Stoll, S., Delon, J., Brotz, T.M., and Germain, R.N. (2002). Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296, 1873-1876. https://doi.org/10.1126/science.1071065
  135. Streuli, C.H. (2009). Integrins and cell-fate determination. J. Cell Sci. 122, 171-177. https://doi.org/10.1242/jcs.018945
  136. Sung, J.H., Zhang, H., Moseman, E.A., Alvarez, D., Iannacone, M., Henrickson, S.E., de la Torre, J.C., Groom, J.R., Luster, A.D., and von Andrian, U.H. (2012). Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes. Cell 150, 1249-1263. https://doi.org/10.1016/j.cell.2012.08.015
  137. Teixeiro, E., Daniels, M.A., Hamilton, S.E., Schrum, A.G., Bragado, R., Jameson, S.C., and Palmer, E. (2009). Different T cell receptor signals determine CD8+ memory versus effector development. Science 323, 502-505. https://doi.org/10.1126/science.1163612
  138. Thaunat, O., Granja, A.G., Barral, P., Filby, A., Montaner, B., Collinson, L., Martinez-Martin, N., Harwood, N.E., Bruckbauer, A., and Batista, F.D. (2012). Asymmetric segregation of polarized antigen on B cell division shapes presentation capacity. Science 335, 475-479. https://doi.org/10.1126/science.1214100
  139. Turley, S.J., Fletcher, A.L., and Elpek, K.G. (2010). The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat. Rev. Immunol. 10, 813-825. https://doi.org/10.1038/nri2886
  140. Twu, Y.C., Gold, M.R., and Teh, H.S. (2011). TNFR1 delivers prosurvival signals that are required for limiting TNFR2-dependent activation-induced cell death (AICD). in $CD8^+$ T cells. Eur. J. Immunol. 41, 335-344. https://doi.org/10.1002/eji.201040639
  141. van Stipdonk, M.J., Lemmens, E.E., and Schoenberger, S.P. (2001). Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol. 2, 423-429. https://doi.org/10.1038/87730
  142. Vezys, V., Yates, A., Casey, K.A., Lanier, G., Ahmed, R., Antia, R., and Masopust, D. (2009). Memory CD8 T-cell compartment grows in size with immunological experience. Nature 457, 196-199. https://doi.org/10.1038/nature07486
  143. Victora, G.D., Schwickert, T.A., Fooksman, D.R., Kamphorst, A.O., Meyer-Hermann, M., Dustin, M.L., and Nussenzweig, M.C. (2010). Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592-605. https://doi.org/10.1016/j.cell.2010.10.032
  144. Voigt, I., Camacho, S.A., de Boer, B.A., Lipp, M., Forster, R., and Berek, C. (2000). CXCR5-deficient mice develop functional germinal centers in the splenic T cell zone. Eur. J. Immunol. 30, 560-567. https://doi.org/10.1002/1521-4141(200002)30:2<560::AID-IMMU560>3.0.CO;2-T
  145. von Andrian, U.H., and Mempel, T.R. (2003). Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867-878. https://doi.org/10.1038/nri1222
  146. Watt, F.M. (2002). Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J. 21, 3919-3926. https://doi.org/10.1093/emboj/cdf399
  147. Webster, B., Ekland, E.H., Agle, L.M., Chyou, S., Ruggieri, R., and Lu, T.T. (2006). Regulation of lymph node vascular growth by dendritic cells. J. Exp. Med. 203, 1903-1913. https://doi.org/10.1084/jem.20052272
  148. Wei, S.H., Safrina, O., Yu, Y., Garrod, K.R., Cahalan, M.D., and Parker, I. (2007). $Ca^{2+}$ signals in CD4+ T cells during early contacts with antigen-bearing dendritic cells in lymph node. J. Immunol. 179, 1586-1594. https://doi.org/10.4049/jimmunol.179.3.1586
  149. Wherry, E.J., and Ahmed, R. (2004). Memory CD8 T-cell differentiation during viral infection. J. Virol. 78, 5535-5545. https://doi.org/10.1128/JVI.78.11.5535-5545.2004
  150. Williams, M.A., Ravkov, E.V., and Bevan, M.J. (2008). Rapid culling of the CD4+ T cell repertoire in the transition from effector to memory. Immunity 28, 533-545. https://doi.org/10.1016/j.immuni.2008.02.014
  151. Xin, A., Masson, F., Liao, Y., Preston, S., Guan, T., Gloury, R., Olshansky, M., Lin, J.X., Li, P., Speed, T.P., et al. (2016). A molecular threshold for effector CD8 T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nat. Immunol. 17, 422-432. https://doi.org/10.1038/ni.3410
  152. Yang, C.Y., Vogt, T.K., Favre, S., Scarpellino, L., Huang, H.Y., Tacchini-Cottier, F., and Luther, S.A. (2014). Trapping of naive lymphocytes triggers rapid growth and remodeling of the fibroblast network in reactive murine lymph nodes. Proc. Natl. Acad. Sci. USA 111, E109-118. https://doi.org/10.1073/pnas.1312585111
  153. Yang, J., Plikus, M.V., and Komarova, N.L. (2015). The Role of Symmetric Stem Cell Divisions in Tissue Homeostasis. PLoS Comput. Biol. 11, e1004629. https://doi.org/10.1371/journal.pcbi.1004629
  154. Yeo, C.J., and Fearon, D.T. (2011). T-bet-mediated differentiation of the activated $CD8^+$ T cell. Eur. J. Immunol. 41, 60-66. https://doi.org/10.1002/eji.201040873
  155. Zumwalde, N.A., Domae, E., Mescher, M.F., and Shimizu, Y. (2013). ICAM-1-dependent homotypic aggregates regulate CD8 T cell effector function and differentiation during T cell activation. J. Immunol. 191, 3681-3693. https://doi.org/10.4049/jimmunol.1201954

Cited by

  1. Creating a Biomimetic Microenvironment for the Ex Vivo Expansion of Primary Human T Lymphocytes vol.17, pp.9, 2017, https://doi.org/10.1002/mabi.201700091
  2. Combined Detection of Serum IL-10, IL-17, and CXCL10 Predicts Acute Rejection Following Adult Liver Transplantation vol.39, pp.8, 2016, https://doi.org/10.14348/molcells.2016.0130
  3. THE ROLE OF SUBPOPULATIONS OF CD8+ T LYMPHOCYTES IN THE DEVELOPMENT OF PREGNANCY vol.20, pp.5, 2016, https://doi.org/10.15789/1563-0625-2018-5-621-638
  4. Cell-intrinsic regulation of peripheral memory-phenotype T cell frequencies vol.13, pp.12, 2016, https://doi.org/10.1371/journal.pone.0200227
  5. Tracing Antiviral CD8+ T Cell Responses Using In Vivo Imaging vol.203, pp.4, 2016, https://doi.org/10.4049/jimmunol.1900232
  6. A teleost structural analogue to the avian bursa of Fabricius vol.236, pp.5, 2020, https://doi.org/10.1111/joa.13147