Acknowledgement
Supported by : Scientific and Technical Research Council of Turkey
References
- Calim, F.F. and Akkurt, F.G. (2011), "Static and free vibration analysis of straight and circular beams on elastic foundation", Mech. Res. Commun., 38, 89-94. https://doi.org/10.1016/j.mechrescom.2011.01.003
- Calim, F.F. (2009a), "Dynamic analysis of beams on viscoelastic foundation", Eur. J. Mech. A-Solid., 28, 469-476.
- Calim, F.F. (2009b), "Forced vibration of helical rods of arbitrary shape", Mech. Res. Commun., 36, 882-891. https://doi.org/10.1016/j.mechrescom.2009.07.007
- Calim, F.F. (2009c), "Dynamic analysis of composite coil springs of arbitrary shape", Compos. B: Eng., 40(8), 741-757. https://doi.org/10.1016/j.compositesb.2009.04.017
- Calim, F.F. (2012), "Forced vibration of curved beams on two-parameter elastic foundation", Appl. Math. Model., 36, 964-973. https://doi.org/10.1016/j.apm.2011.07.066
- Calim, F.F. (2016), "Transient analysis of axially functionally graded Timoshenko beams with variable cross-section", Compos. B: Eng., 98, 472-483. https://doi.org/10.1016/j.compositesb.2016.05.040
- Celebi, K., Yarimpabuc, D. and Keles, I. (2016), "A unified method for stresses in FGM sphere with exponentially-varying properties", Struct. Eng. Mech., 57(5), 823-35. https://doi.org/10.12989/sem.2016.57.5.823
- Celep, Z. (1990), "In-plane vibrations of circular rings on a tensionless foundation", J. Sound Vib., 143, 461-471. https://doi.org/10.1016/0022-460X(90)90736-J
- Chen, W.Q., Lu, C.F. and Bian, Z.G. (2004), "A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation", Appl. Math. Model., 28, 877-890. https://doi.org/10.1016/j.apm.2004.04.001
- Chen, Y.H., Huang, Y.H. and Shih, C.T. (2001), "Reponse of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load", J. Sound Vib., 241, 809-824. https://doi.org/10.1006/jsvi.2000.3333
- Dehghan, M. and Baradaran, G.H. (2011), "Buckling and free vibration analysis of thick rectangular plates resting on elastic foundation using mixed finite element and differential quadrature method", Appl. Math. Comput., 218, 2772-2784.
- Ding, H., Shi, K.L., Chen, L.Q. and Yang, S.P. (2013), "Dynamics response of an infinite Timoshenko beam on a nonlinear viscoelastic foundation to a moving load", Nonlin. Dyn., 73, 285-298. https://doi.org/10.1007/s11071-013-0784-0
- Durbin, F. (1974), "Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate's method", Compos. J., 17, 371-376.
- Eratli, N., Argeso, H., Calim, F.F., Temel, B. and Omurtag, MH. (2014), "Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM", J. Sound Vib., 333, 3671-3690. https://doi.org/10.1016/j.jsv.2014.03.017
- Issa, M.S. (1988), "Natural frequencies of continuous curved beams on Winkler-type foundations", J. Sound Vib., 127, 291-301. https://doi.org/10.1016/0022-460X(88)90304-5
- Issa, M.S., Nasr, M.E. and Naiem, M.A. (1990), "Free vibrations of curved Timoshenko beams on Pasternak foundations", Int. J. Solid. Struct., 26, 1243-1252. https://doi.org/10.1016/0020-7683(90)90059-5
- Kargarnovin, M.H. and Younesian, D. (2004), "Dynamics of Timoshenko beams on Pasternak foundation under moving load", Mech. Res. Commun., 31, 713-723. https://doi.org/10.1016/j.mechrescom.2004.05.002
- Kargarnovin, M.H., Younesian, D., Thompson, D.J. and Jones, C.J.C. (2005), "Response of beams on nonlinear viscoelastic foundations to harmonic moving loads", Comput. Struct., 83, 1865-1877. https://doi.org/10.1016/j.compstruc.2005.03.003
- Kerr, A.D. (1964), "Elastic and viscoelastic foundation models", J. Appl. Mech.-T, ASME, 31, 491-498. https://doi.org/10.1115/1.3629667
- Kim, N., Fu, C.C. and Kim, M.Y. (2007), "Dynamic stiffness matrix of non-symmetric thin-walled curved beam on Winkler and Pasternak type foundations", Adv. Eng. Softw., 38, 158-171. https://doi.org/10.1016/j.advengsoft.2006.08.016
- Liu, T. and Li, Q. (2003), "Transient elastic waves propagation in an infinite Timoshenko beam on viscoelastic foundation", Int. J. Solid. Struct., 40, 3211-3228. https://doi.org/10.1016/S0020-7683(03)00160-4
- Muscolino, G. and Palmeri, A. (2007), "Response of beams resting on viscoelastically damped foundation to moving oscillators", Int. J. Solid. Struct., 44, 1317-1336. https://doi.org/10.1016/j.ijsolstr.2006.06.013
- Narayanan, G.V. (1979), "Numerical operational methods in structural dynamics", Ph.D. Thesis, University of Minnesota, Minneapolis MN.
- Sokolnikoff, I.S. and Redheffer, R.M. (1958), Mathematics of Physics and Modern Engineering, McGraw-Hill, Tokyo.
- Temel, B., Calim, F.F. and Tutuncu, N. (2005), "Forced vibration of composite cylindrical helical rods", Int. J. Mech. Sci., 47, 998-1022. https://doi.org/10.1016/j.ijmecsci.2005.04.003
- Verichev, S.N. and Metrikine, V.A. (2002), "Instability of a bogie moving on a flexibly supported Timoshenko beam", J. Sound Vib., 253, 653-668. https://doi.org/10.1006/jsvi.2001.4069
- Wang, T.M. and Brannen, W.F. (1982), "Natural frequencies for out-of-plane vibrations of curved beams on elastic foundations", J. Sound Vib., 84, 241-246. https://doi.org/10.1016/S0022-460X(82)80006-0
- Wu, X. and Parker, R.G. (2006), "Vibration of rings on a general elastic foundation", J. Sound Vib., 295, 194-213. https://doi.org/10.1016/j.jsv.2006.01.007
- Yang, Y., Ding, H. and Chen, L.Q. (2013), "Dynamics response to a moving load of a Timoshenko beam resting on a nonlinear viscoelastic foundation", Acta Mech. Sinica, 29, 718-727. https://doi.org/10.1007/s10409-013-0069-3
- Zhu, B. and Leung, A.Y.T. (2009), "Linear and nonlinear vibration of non-uniform beams on two-parameter elastic foundation using p-elements", Comput. Geotech., 36, 743-750. https://doi.org/10.1016/j.compgeo.2008.12.006
Cited by
- Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation vol.103, 2016, https://doi.org/10.1016/j.compositesb.2016.08.008
- Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams vol.60, pp.3, 2016, https://doi.org/10.12989/sem.2016.60.3.455
- Fractional wave propagation in radially vibrating non-classical cylinder vol.13, pp.5, 2016, https://doi.org/10.12989/eas.2017.13.5.465
- Vibration Analysis of Functionally Graded Timoshenko Beams on Winkler-Pasternak Elastic Foundation vol.44, pp.3, 2016, https://doi.org/10.1007/s40996-019-00283-x
- Free vibration analysis of functionally graded cylindrical helices with variable cross-section vol.494, pp.None, 2016, https://doi.org/10.1016/j.jsv.2020.115856
- Transient response of functionally graded non-uniform cylindrical helical rods vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.571