DOI QR코드

DOI QR Code

Dynamic response of curved Timoshenko beams resting on viscoelastic foundation

  • Calim, Faruk Firat (Department of Civil Engineering, Adana Science and Technology University)
  • Received : 2015.08.11
  • Accepted : 2016.06.24
  • Published : 2016.08.25

Abstract

Curved beams' dynamic behavior on viscoelastic foundation is the subject of the current paper. By rewritten the Timoshenko beams theory formulation for the curved and twisted spatial rods, governing equations are obtained for the circular beams on viscoelastic foundation. Using the complementary functions method (CFM), in Laplace domain, an ordinary differential equation is solved and then those results are transformed to real space by Durbin's algorithm. Verification of the proposed method is illustrated by solving an example by variating foundation parameters.

Keywords

Acknowledgement

Supported by : Scientific and Technical Research Council of Turkey

References

  1. Calim, F.F. and Akkurt, F.G. (2011), "Static and free vibration analysis of straight and circular beams on elastic foundation", Mech. Res. Commun., 38, 89-94. https://doi.org/10.1016/j.mechrescom.2011.01.003
  2. Calim, F.F. (2009a), "Dynamic analysis of beams on viscoelastic foundation", Eur. J. Mech. A-Solid., 28, 469-476.
  3. Calim, F.F. (2009b), "Forced vibration of helical rods of arbitrary shape", Mech. Res. Commun., 36, 882-891. https://doi.org/10.1016/j.mechrescom.2009.07.007
  4. Calim, F.F. (2009c), "Dynamic analysis of composite coil springs of arbitrary shape", Compos. B: Eng., 40(8), 741-757. https://doi.org/10.1016/j.compositesb.2009.04.017
  5. Calim, F.F. (2012), "Forced vibration of curved beams on two-parameter elastic foundation", Appl. Math. Model., 36, 964-973. https://doi.org/10.1016/j.apm.2011.07.066
  6. Calim, F.F. (2016), "Transient analysis of axially functionally graded Timoshenko beams with variable cross-section", Compos. B: Eng., 98, 472-483. https://doi.org/10.1016/j.compositesb.2016.05.040
  7. Celebi, K., Yarimpabuc, D. and Keles, I. (2016), "A unified method for stresses in FGM sphere with exponentially-varying properties", Struct. Eng. Mech., 57(5), 823-35. https://doi.org/10.12989/sem.2016.57.5.823
  8. Celep, Z. (1990), "In-plane vibrations of circular rings on a tensionless foundation", J. Sound Vib., 143, 461-471. https://doi.org/10.1016/0022-460X(90)90736-J
  9. Chen, W.Q., Lu, C.F. and Bian, Z.G. (2004), "A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation", Appl. Math. Model., 28, 877-890. https://doi.org/10.1016/j.apm.2004.04.001
  10. Chen, Y.H., Huang, Y.H. and Shih, C.T. (2001), "Reponse of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load", J. Sound Vib., 241, 809-824. https://doi.org/10.1006/jsvi.2000.3333
  11. Dehghan, M. and Baradaran, G.H. (2011), "Buckling and free vibration analysis of thick rectangular plates resting on elastic foundation using mixed finite element and differential quadrature method", Appl. Math. Comput., 218, 2772-2784.
  12. Ding, H., Shi, K.L., Chen, L.Q. and Yang, S.P. (2013), "Dynamics response of an infinite Timoshenko beam on a nonlinear viscoelastic foundation to a moving load", Nonlin. Dyn., 73, 285-298. https://doi.org/10.1007/s11071-013-0784-0
  13. Durbin, F. (1974), "Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate's method", Compos. J., 17, 371-376.
  14. Eratli, N., Argeso, H., Calim, F.F., Temel, B. and Omurtag, MH. (2014), "Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM", J. Sound Vib., 333, 3671-3690. https://doi.org/10.1016/j.jsv.2014.03.017
  15. Issa, M.S. (1988), "Natural frequencies of continuous curved beams on Winkler-type foundations", J. Sound Vib., 127, 291-301. https://doi.org/10.1016/0022-460X(88)90304-5
  16. Issa, M.S., Nasr, M.E. and Naiem, M.A. (1990), "Free vibrations of curved Timoshenko beams on Pasternak foundations", Int. J. Solid. Struct., 26, 1243-1252. https://doi.org/10.1016/0020-7683(90)90059-5
  17. Kargarnovin, M.H. and Younesian, D. (2004), "Dynamics of Timoshenko beams on Pasternak foundation under moving load", Mech. Res. Commun., 31, 713-723. https://doi.org/10.1016/j.mechrescom.2004.05.002
  18. Kargarnovin, M.H., Younesian, D., Thompson, D.J. and Jones, C.J.C. (2005), "Response of beams on nonlinear viscoelastic foundations to harmonic moving loads", Comput. Struct., 83, 1865-1877. https://doi.org/10.1016/j.compstruc.2005.03.003
  19. Kerr, A.D. (1964), "Elastic and viscoelastic foundation models", J. Appl. Mech.-T, ASME, 31, 491-498. https://doi.org/10.1115/1.3629667
  20. Kim, N., Fu, C.C. and Kim, M.Y. (2007), "Dynamic stiffness matrix of non-symmetric thin-walled curved beam on Winkler and Pasternak type foundations", Adv. Eng. Softw., 38, 158-171. https://doi.org/10.1016/j.advengsoft.2006.08.016
  21. Liu, T. and Li, Q. (2003), "Transient elastic waves propagation in an infinite Timoshenko beam on viscoelastic foundation", Int. J. Solid. Struct., 40, 3211-3228. https://doi.org/10.1016/S0020-7683(03)00160-4
  22. Muscolino, G. and Palmeri, A. (2007), "Response of beams resting on viscoelastically damped foundation to moving oscillators", Int. J. Solid. Struct., 44, 1317-1336. https://doi.org/10.1016/j.ijsolstr.2006.06.013
  23. Narayanan, G.V. (1979), "Numerical operational methods in structural dynamics", Ph.D. Thesis, University of Minnesota, Minneapolis MN.
  24. Sokolnikoff, I.S. and Redheffer, R.M. (1958), Mathematics of Physics and Modern Engineering, McGraw-Hill, Tokyo.
  25. Temel, B., Calim, F.F. and Tutuncu, N. (2005), "Forced vibration of composite cylindrical helical rods", Int. J. Mech. Sci., 47, 998-1022. https://doi.org/10.1016/j.ijmecsci.2005.04.003
  26. Verichev, S.N. and Metrikine, V.A. (2002), "Instability of a bogie moving on a flexibly supported Timoshenko beam", J. Sound Vib., 253, 653-668. https://doi.org/10.1006/jsvi.2001.4069
  27. Wang, T.M. and Brannen, W.F. (1982), "Natural frequencies for out-of-plane vibrations of curved beams on elastic foundations", J. Sound Vib., 84, 241-246. https://doi.org/10.1016/S0022-460X(82)80006-0
  28. Wu, X. and Parker, R.G. (2006), "Vibration of rings on a general elastic foundation", J. Sound Vib., 295, 194-213. https://doi.org/10.1016/j.jsv.2006.01.007
  29. Yang, Y., Ding, H. and Chen, L.Q. (2013), "Dynamics response to a moving load of a Timoshenko beam resting on a nonlinear viscoelastic foundation", Acta Mech. Sinica, 29, 718-727. https://doi.org/10.1007/s10409-013-0069-3
  30. Zhu, B. and Leung, A.Y.T. (2009), "Linear and nonlinear vibration of non-uniform beams on two-parameter elastic foundation using p-elements", Comput. Geotech., 36, 743-750. https://doi.org/10.1016/j.compgeo.2008.12.006

Cited by

  1. Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation vol.103, 2016, https://doi.org/10.1016/j.compositesb.2016.08.008
  2. Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams vol.60, pp.3, 2016, https://doi.org/10.12989/sem.2016.60.3.455
  3. Fractional wave propagation in radially vibrating non-classical cylinder vol.13, pp.5, 2016, https://doi.org/10.12989/eas.2017.13.5.465
  4. Vibration Analysis of Functionally Graded Timoshenko Beams on Winkler-Pasternak Elastic Foundation vol.44, pp.3, 2016, https://doi.org/10.1007/s40996-019-00283-x
  5. Free vibration analysis of functionally graded cylindrical helices with variable cross-section vol.494, pp.None, 2016, https://doi.org/10.1016/j.jsv.2020.115856
  6. Transient response of functionally graded non-uniform cylindrical helical rods vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.571