DOI QR코드

DOI QR Code

Nonlinear vibration of conservative oscillator's using analytical approaches

  • Bayat, Mahmoud (Young Researchers and Elite Club, Roudehen Branch, Islamic Azad University) ;
  • Pakar, Iman (Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University) ;
  • Bayat, Mahdi (Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University)
  • Received : 2016.01.02
  • Accepted : 2016.05.11
  • Published : 2016.08.25

Abstract

In this paper, a new analytical approach has been presented for solving nonlinear conservative oscillators. Variational approach leads us to high accurate solution with only one iteration. Two different high nonlinear examples are also presented to show the application and accuracy of the presented approach. The results are compared with numerical solution using runge-kutta algorithm in different figures and tables. It has been shown that the variatioanl approach doesn't need any small perturbation and is accurate for nonlinear conservative equations.

Keywords

References

  1. Bayat, M. and Pakar, I, (2011b), "Application of he's energy balance method for nonlinear vibration of thin circular sector cylinder", Int. J. Phy. Sci., 6(23), 5564-5570.
  2. Bayat, M. and Pakar, I. (2011a), "Nonlinear free vibration analysis of tapered beams by Hamiltonian approach", J. Vibroeng., 13(4), 654-661.
  3. Bayat, M. and Pakar, I. (2012a), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
  4. Bayat, M. and Pakar, I. (2013b), "Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses", Earthq. Eng. Eng. Vib., 12(3), 411-420. https://doi.org/10.1007/s11803-013-0182-0
  5. Bayat, M. and Pakar, I. (2013c), "On the approximate analytical solution to non-linear oscillation systems", Shock Vib., 20(1), 43-52. https://doi.org/10.1155/2013/549213
  6. Bayat, M. and Pakar, I. (2015b), "Mathematical solution for nonlinear vibration equations using variational approach", Smart Struct. Syst., 15(5), 1311-1327. https://doi.org/10.12989/sss.2015.15.5.1311
  7. Bayat, M., Bayat, M. and Pakar, I. (2014c), "Nonlinear vibration of an electrostatically actuated microbeam", Latin Am. J. Solid. Struct., 11(3), 534-544. https://doi.org/10.1590/S1679-78252014000300009
  8. Bayat, M., Bayat, M. and Pakar, I. (2014d), "Forced nonlinear vibration by means of two approximate analytical solutions", Struct. Eng. Mech., 50(6), 853-862. https://doi.org/10.12989/sem.2014.50.6.853
  9. Bayat, M., Bayat, M. and Pakar, I. (2015a), "Analytical study of Nonlinear vibration of oscillators with damping", Earthq. Struct., 9(1), 221-232. https://doi.org/10.12989/eas.2015.9.1.221
  10. Bayat, M., Bayat, M. and Pakar, I. (2015c), "Analytical study of nonlinear vibration of oscillators with damping", Earthq. Struct., 9(1), 221-232. https://doi.org/10.12989/eas.2015.9.1.221
  11. Bayat, M., Pakar, I. and Bayat, M. (2013a), "Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell", Steel Compos. Struct., 14(5), 511-521. https://doi.org/10.12989/scs.2013.14.5.511
  12. Bayat, M., Pakar, I. and Bayat, M. (2014e), "Study of complex nonlinear vibrations by means of accurate analytical approach", Steel Compos. Struct., 17(5), 721-734. https://doi.org/10.12989/scs.2014.17.5.721
  13. Bayat, M., Pakar, I. and Cveticanin, L. (2014a), "Nonlinear free vibration of systems with inertia and static type cubic nonlinearities: an analytical approach", Mech. Machine Theory, 77, 50-58. https://doi.org/10.1016/j.mechmachtheory.2014.02.009
  14. Bayat, M., Pakar, I. and Cveticanin, L. (2014b), "Nonlinear vibration of stringer shell by means of extended Hamiltonian approach", Arch. Appl. Mech., 84(1),43-50. https://doi.org/10.1007/s00419-013-0781-2
  15. Bayat, M., Pakar, I. and Domaiirry, G. (2012b), "Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: a review", Latin Am. J. Solid. Struct., 9(2), 145-234.
  16. Bayat, M., Pakar, I. and Shahidi, M. (2011c), "Analysis of nonlinear vibration of coupled systems with cubic nonlinearity", Mechanika, 17(6), 620-629.
  17. Cordero, A., Hueso, J.L., Martinez, E. and Torregrosa, J.R. (2010), "Iterative methods for use with nonlinear discrete algebraic models", Math. Comput. Model., 52(7-8), 1251-1257. https://doi.org/10.1016/j.mcm.2010.02.028
  18. Cveticanin, L. (2012), "A review on dynamics of mass variable systems", J. Serb. Soc. Comput. Mech., 6(1), 56-73.
  19. Cveticanin, L. (2015), "A solution procedure based on the Ateb function for a two-degree-of-freedom oscillator", J. Sound Vib., 346, 298-313. https://doi.org/10.1016/j.jsv.2015.02.016
  20. Dehghan, M. and Tatari, M. (2008), "Identifying an unknown function in a parabolic equation with over specified data via He's variational iteration method", Chaos Solit. Fract., 36(1), 157-166. https://doi.org/10.1016/j.chaos.2006.06.023
  21. Geng, L. and Cai, X.C. (2007), "He's frequency formulation for nonlinear oscillators", Eur. J. Phys., 28, 923-931. https://doi.org/10.1088/0143-0807/28/5/016
  22. He, J.H. (2004), "Solution of nonlinear equations by an ancient Chinese algorithm", Appl. Math. Comput., 151, 293-297.
  23. He, J.H. (2007), "Variational approach for nonlinear oscillators", Chaos Solit. Fract., 34(5), 1430-1439. https://doi.org/10.1016/j.chaos.2006.10.026
  24. He, J.H. (2008), "An improved amplitude-frequency formulation for nonlinear oscillators", Int. J. Nonlin. Sci. Numer. Simul., 9(2), 211-212.
  25. He, J.H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Lett. A, 374(23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
  26. Jamshidi, N. and Ganji, D.D. (2010), "Application of energy balance method and variational iteration method to an oscillation of a mass attached to a stretched elastic wire", Curr. Appl. Phys., 10, 484-486. https://doi.org/10.1016/j.cap.2009.07.004
  27. Kuo, B.L. and Lo, C.Y. (2009), "Application of the differential transformation method to the solution of a damped system with high nonlinearity", Nonlin. Anal., 70(4), 1732-1737. https://doi.org/10.1016/j.na.2008.02.056
  28. Mehdipour, I., Ganji, D.D. and Mozaffari, M. (2010), "Application of the energy balance method to nonlinear vibrating equations", Curr. Appl. Phys., 10(1), 104-112. https://doi.org/10.1016/j.cap.2009.05.016
  29. Odibat, Z., Momani, S. and Suat Erturk, V. (2008), "Generalized differential transform method: application to differential equations of fractional order", Appl. Math. Comput., 197, 467-477.
  30. Pakar, I. and Bayat, M. (2011a), "Analytical solution for strongly nonlinear oscillation systems using energy balance method", Int. J. Phys. Sci., 6(22), 5166-5170.
  31. Pakar, I. and Bayat, M. (2012b), "Analytical study on the non-linear vibration of Euler-Bernoulli beams", J. Vibroeng., 14(1), 216-224.
  32. Pakar, I. and Bayat, M. (2013a), "An analytical study of nonlinear vibrations of buckled Euler-Bernoulli beams", Acta Physica Polonica A, 123(1), 48-52. https://doi.org/10.12693/APhysPolA.123.48
  33. Pakar, I. and Bayat, M. (2013b), "Vibration analysis of high nonlinear oscillators using accurate approximate methods", Struct. Eng. Mech., 46(1), 137-151. https://doi.org/10.12989/sem.2013.46.1.137
  34. Pakar, I., Bayat, M. and Bayat, M. (2012a), "On the approximate analytical solution for parametrically excited nonlinear oscillators", J. Vibroeng., 14(1), 423-429.
  35. Shen, Y.Y. and Mo, L.F. (2009), "The max-min approach to a relativistic equation", Comput. Math. Appl., 58(11), 2131-2133. https://doi.org/10.1016/j.camwa.2009.03.056
  36. Suna, W.P., Wua, B.S. and Lim, C.W. (2007), "Approximate analytical solutions for oscillation of a mass attached to a stretched elastic wire", J. Sound Vib., 300(5-6), 1042-1047. https://doi.org/10.1016/j.jsv.2006.08.025
  37. Wu, G. (2011), "Adomian decomposition method for non-smooth initial value problems", Math. Comput. Model., 54(9-10), 2104-2108. https://doi.org/10.1016/j.mcm.2011.05.018
  38. Xu, L. (2010), "Application of Hamiltonian approach to an oscillation of a mass attached to a stretched elastic wire", Math. Comput. Appl., 15(5), 901-906.
  39. Xu, N. and Zhang, A. (2009), "Variational approach next term to analyzing catalytic reactions in short monoliths", Comput. Math. Appl., 58(11-12), 2460-2463. https://doi.org/10.1016/j.camwa.2009.03.035
  40. Zeng, D.Q. and Lee, Y.Y. (2009), "Analysis of strongly nonlinear oscillator using the max-min approach", Int. J. Nonlin. Sci. Numer. Simul., 10(10), 1361-1368.

Cited by

  1. Effect of granulated rubber on shear strength of fine-grained sand vol.9, pp.5, 2017, https://doi.org/10.1016/j.jrmge.2017.03.008
  2. Prediction of Liquefaction Potential of Sandy Soil around a Submarine Pipeline under Earthquake Loading vol.10, pp.2, 2019, https://doi.org/10.1061/(ASCE)PS.1949-1204.0000349
  3. Shear behavior of fiber-reinforced sand composite vol.12, pp.5, 2019, https://doi.org/10.1007/s12517-019-4326-z
  4. Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems vol.61, pp.5, 2016, https://doi.org/10.12989/sem.2017.61.5.657
  5. Higher-order approximate periodic solution for the oscillator with strong nonlinearity of polynomial type vol.134, pp.6, 2016, https://doi.org/10.1140/epjp/i2019-12621-3
  6. Experimental study of impact of cement treatment on the shear behavior of loess and clay vol.13, pp.4, 2016, https://doi.org/10.1007/s12517-020-5181-7
  7. Comparison of different local site effect estimation methods in site with high thickness of alluvial layer deposits: a case study of Babol city vol.13, pp.7, 2016, https://doi.org/10.1007/s12517-020-5258-3