DOI QR코드

DOI QR Code

Effects of Sheet Thickness on the Electromagnetic Wave Absorbing Characterization of Li0.375Ni0.375Zn0.25-Ferrite Composite as a Radiation Absorbent Material

  • Received : 2016.03.09
  • Accepted : 2016.06.14
  • Published : 2016.07.31

Abstract

This paper reports on a study of LiNiZn-ferrite composite as a radiation absorbent material (RAM). The electromagnetic (EM) wave absorbers are composed of an EM wave absorbing material and a polymeric binder. The surface morphology, chemical composition, weight percent of the ferrite composite of the toroid sample, magnetic properties, and return loss are investigated using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and network analyzer. For preparing the absorbing sheet, chlorinated polyethylene (CPE) is used as a polymeric binder. The EM wave absorption properties of the prepared samples were studied at 4 - 8 GHz. We can confirm the effects of the thickness of the samples for absorption properties. An absorption bandwidth of more than a 10-dB return loss shifts toward a lower frequency range along with an increase in the thickness of the absorber.

Keywords

References

  1. C. M. Choi and D. I. Kim, "A study on development of EM wave absorber using $TiO_2$ for automotive radar in cars," Journal of the Korean Institute of Electromagnetic Engineering and Science, vol. 8, no. 3, pp. 110-113, 2008. https://doi.org/10.5515/JKIEES.2008.8.3.110
  2. C. M. Choi, D. I. Kim, S. H. Je, and Y. S. Choi, "A study on electromagnetic wave absorber for the collision-avoidance radar," Current Applied Physics, vol. 7, no. 5, pp. 586-589, 2007. https://doi.org/10.1016/j.cap.2006.12.003
  3. S. M. Abbas, A. K. Dixit, R. Chatterjee, and T. C. Goel, "Complex permittivity and microwave absorption properties of $BaTiO_3$-polyaniline composite," Materials Science and Engineering B, vol. 123, no. 2, pp. 167-171, 2005. https://doi.org/10.1016/j.mseb.2005.07.018
  4. S. M. Abbas, A. K. Dixit, R. Chatterjee, and T. C. Goel, "Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites," Journal of Magnetism and Magnetic Materials, vol. 309, no. 1, pp. 20-24, 2007. https://doi.org/10.1016/j.jmmm.2006.06.006
  5. K. Khan and S. Rehman, "Microwave absorbance properties of zirconium-manganese substituted cobalt nanoferrite as electromagnetic (EM) wave absorbers," Materials Research Bulletin, vol. 50, pp. 454-461, 2014. https://doi.org/10.1016/j.materresbull.2013.11.018
  6. Y. B. Feng, T. Qiu, and C. Y. Shen, "Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite," Journal of Magnetism and Magnetic Materials, vol. 318, no. 1, pp. 8-13, 2007. https://doi.org/10.1016/j.jmmm.2007.04.012
  7. W. Meng, D. Yuping, L. Shunhua, L. Xiaogang, and J. Zhijiang, "Absorption properties of carbonyl-iron/carbon black double-layer microwave absorbers," Journal of Magnetism and Magnetic Materials, vol. 321, no. 20, pp. 3442-3446, 2009. https://doi.org/10.1016/j.jmmm.2009.06.040
  8. M. S. Kim, E. H. Min, and J. G. Koh, "Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber," Journal of Magnetism and Magnetic Materials, vol. 321, no. 6, pp. 581-585, 2009. https://doi.org/10.1016/j.jmmm.2008.09.033
  9. S. M. Abbas, M. Chandra, A. Verma, R. Chatterjee, and T. C. Goel, "Complex permittivity and microwave absorption properties of a composite dielectric absorber," Composites Part A: Applied Science and Manufacturing, vol. 37, no. 11, pp. 2148-2154, 2006. https://doi.org/10.1016/j.compositesa.2005.11.006
  10. C. H. Peng, C. C. Hwang, J. Wan, J. S. Tsai, and S. Y. Chen, "Microwave-absorbing characteristics for the composites of thermal-plastic polyurethane (TPU)-bonded NiZn-ferrites prepared by combustion synthesis method," Materials Science and Engineering B, vol. 117, no, 1, pp. 27-36, 2005. https://doi.org/10.1016/j.mseb.2004.10.022
  11. A. N. Yusoff and M. H. Abdullah, "Microwave electromagnetic and absorption properties of some LiZn ferrites," Journal of Magnetism and Magnetic Materials, vol. 269, no. 2, pp. 271-280, 2004. https://doi.org/10.1016/S0304-8853(03)00617-6
  12. T. Nakamura, T. Miyamoto, and Y. Yamada, "Complex permeability spectra of polycrystalline Li-Zn ferrite and application to EM-wave absorber," Journal of Magnetism and Magnetic Materials, vol. 256, no. 1, pp. 340-347, 2003. https://doi.org/10.1016/S0304-8853(02)00698-4
  13. Y. Hwang, "Microwave absorbing properties of NiZn-ferrite synthesized from waste iron oxide catalyst," Materials Letters, vol. 60, no. 27, pp. 3277-3280, 2006. https://doi.org/10.1016/j.matlet.2006.03.010
  14. R. Dosoudil, M. Usakova, J. Franek, J. Slama, and V. Olah, "RF electromagnetic wave absorbing properties of ferrite polymer composite materials," Journal of Magnetism and Magnetic Materials, vol. 304, no. 2, pp. e755-e757, 2006. https://doi.org/10.1016/j.jmmm.2006.02.216
  15. S. G. Bachhav, R. S. Patil, P. B. Ahirrao, A. M. Patil, and D. R. Patil, "Microstructure and magnetic studies of Mg-Ni-Zn-Cu ferrites," Materials Chemistry and Physics, vol. 129, no. 3, pp. 1104-1109, 2011. https://doi.org/10.1016/j.matchemphys.2011.05.067
  16. A. C. F. M. Costa, A. P. Diniz, V. J. Silva, R. H. G. A. Kiminami, D. R. Cornejo, A. M. Gama, M. C. Rezende, and L. Gama, "Influence of calcinations temperature on the morphology and magnetic properties of Ni-Zn ferrite applied as an electromagnetic energy absorber," Journal of Alloys and Compounds, vol. 483, no. 1, pp. 563-565, 2009. https://doi.org/10.1016/j.jallcom.2008.08.108
  17. W. Fu, S. Liu, W. Fan, H. Yang, X. Pang, J. Xu, and G. Zou, "Hollow glass microspheres coated with $CoFe_2O_4$ and its microwave absorption property, " Journal of Magnetism and Magnetic Materials, vol. 316, no. 1, pp. 54-58, 2007. https://doi.org/10.1016/j.jmmm.2007.03.201
  18. F. Jin, H. Tong, J. Li, L. Shen, and P. K. Chu, "Structure and microwave-absorbing properties of Fe-particle containing alumina prepared by micro-arc discharge oxidation," Surface & Coatings Technology, vol. 201, no. 1, pp. 292-295, 2006. https://doi.org/10.1016/j.surfcoat.2005.11.116
  19. Y. Xie, X. Hong, J. Liu, Z. Le, F. Huang, Y. Qin, et al., "Synthesis and electromagnetic properties of $BaFe_{11.92}(LaNd)_{0.04}O_{19}$/titanium dioxide composites," Material Research Bulletin, vol. 50, pp. 483-489, 2014. https://doi.org/10.1016/j.materresbull.2013.11.022
  20. B. F. Zou, T. D. Zhou, and J. Hu, "Effect of amorphous evolution on structure and absorption properties of FeSiCr alloy powder," Journal of Magnetism and Magnetic Materials, vol. 335, pp. 17-20, 2013. https://doi.org/10.1016/j.jmmm.2013.01.011
  21. Y. Wang, F. Xu, L. Li, H. Liu, H. Qiu, and J. Jiang, "Magnetic properties of La-substituted Ni-Zn-Cr ferrite via rheological phase synthesis," Materials Chemistry and Physics, vol. 112, no. 3, pp. 769-773, 2008. https://doi.org/10.1016/j.matchemphys.2008.06.032
  22. T. G. Lee, J. B. Kim, and T. H. Noh, "Electromagnetic wave absorption characteristics of nanocrystalline FeCuNbSiB alloy flakes/polymer composite sheets with different flake thickness," Journal of Magnetics, vol. 14, no. 4, pp. 155-160, 2009. https://doi.org/10.4283/JMAG.2009.14.4.155
  23. X. G. Liu, B. Li, D. Y. Geng, W. B. Cui, F. Yang, Z. G. Xie, D. J. Kang, and Z. D. Zhang, "(Fe, Ni)/C nanocapsules for electromagnetic wave absorber in the whole Ku-band," Carbon, vol. 47, no. 2, pp. 470-474, 2009. https://doi.org/10.1016/j.carbon.2008.10.028
  24. M. K. Tehrani, A. Ghasemi, M. Moradi, and R. S. Alam, "Wideband electromagnetic wave absorber using doped barium hexaferrite in Ku-band," Journal of Alloys and Compounds, vol. 509, no. 33, pp. 8398-8400, 2011. https://doi.org/10.1016/j.jallcom.2011.05.091
  25. A. P. Grosvenor, M. C. Biesinger, R. C. Smart, and N. S. McIntyre, "New interpretations of XPS spectra of nickel metal and oxides," Surface Science, vol. 600, no. 9, pp. 1771-1779, 2006. https://doi.org/10.1016/j.susc.2006.01.041
  26. T. Yamashita and P. Hayes, "Analysis of XPS spectra of $Fe^{2+}$ and $Fe^{3+}$ ions in oxide materials," Applied Surface Science, vol. 254, no. 8, pp. 2441-2449, 2008. https://doi.org/10.1016/j.apsusc.2007.09.063
  27. M. S. Lin, C. G. Hsu, C. H. Chiang, and C. K. Cho, "Measurement and analysis techniques for designing microwave absorbers," Journal of Chung Cheng Institute of Technology, vol. 43, no. 2, pp. 29-39, 2014.

Cited by

  1. Electronically Switchable Broadband Metamaterial Absorber vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-05330-z
  2. A Stretchable Electromagnetic Absorber Fabricated Using Screen Printing Technology vol.17, pp.6, 2017, https://doi.org/10.3390/s17051175
  3. Optimal parameter retrieval for metamaterial absorbers using the least-square method for wide incidence angle insensitivity vol.56, pp.16, 2017, https://doi.org/10.1364/AO.56.004670
  4. Thermal Frequency Reconfigurable Electromagnetic Absorber Using Phase Change Material vol.18, pp.10, 2018, https://doi.org/10.3390/s18103506
  5. Frequency-Tunable Electromagnetic Absorber by Mechanically Controlling Substrate Thickness vol.2018, pp.1687-5877, 2018, https://doi.org/10.1155/2018/1963051
  6. Broadband frequency-reconfigurable metamaterial absorber using switchable ground plane vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-27609-5