References
- Ahmed, M.Y.M. and Qin, N. (2009), "Surrogate-based aerodynamic design optimization: Use of Surrogates in Aerodynamic Design Optimization", 13th International Conference on Aerspace Sciences & Aviation Technology, ASAT-13-AE-14, 1-26.
- Balabanov, V.O., Giunta, A.A., Golovidov, O., Grossman, B., Mason, W.H., Watson, L.T. and Haftka, R.T. (1999), "Reasonable design space approach to response surface approximation", J. Aircraft, 36(1), 308-315. https://doi.org/10.2514/2.2438
- Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D. and Torczon, V. (1998), "Optimization using surrogate objectives on a helicopter test example", Comput. Meth. Optim. Des. Control, Boston: Birkhauser, 49-58.
- Box, G.E.P. and Wilson, K.B. (1951), "On the experimental attainment of optimum conditions", J. Roy. Statist. Soc., Series B, 13(1), 1-35.
- Daberkow, D.D. and Mavris, D.N. (1998), "New approaches to conceptual and preliminary aircraft design: a comparative assessment of a neural network formulation and a response surface methodology", 1998 World Aviation Conference, Anaheim, CA.
- Demyanov, V., Kanevsky, M., Chernov, S., Savelieva, E. and Timonin, V. (1998), "Neural network residual kriging application for climatic data", J. Geographic Inform. Decision Anal., 2(2), 215-232.
- Efron, B. (1983), "Estimating the error rate of a prediction rule: improvement on cross-validation", J. Am. Statist. Assoc., 78(382), 316-331. https://doi.org/10.1080/01621459.1983.10477973
- Forrester, A.I.J. and Keane, A.J. (2009), "Recent advances in surrogate based optimization", Prog. Aero. Sci., 45(1), 50-79. https://doi.org/10.1016/j.paerosci.2008.11.001
- Giunta, A.A. (1997), "Aircraft multidisciplinary design optimization using design of experiments theory and response surface modeling methods", Ph.D. Dissertation, Faculty of Virginia Polytechnic Inst. And State Univ., Blacksburg, VA.
- Hagan, M.T., Demuth, H.B. and Beale, M. (1996), Neural network design, PWS Publishing Company.
- Hebb, D.O. (2002), Organization of behavior: a neuropsychological theory, L. Erlbaum Associates.
- Hedayat, A., Sloane, N. and Stufken, J. (1999), Orthogonal arrays: theory and applications, Springer, Series in Statistics, Berlin.
- Jones, D.R. (2001), "A taxonomy of global optimization methods based on response surface", J. Global Optimiz., 21(4), 345-383. https://doi.org/10.1023/A:1012771025575
- Jones, D. and Schonlau, M. (1998), "Expensive global optimization of expensive black-box functions", J. Global Optimiz., 13, 455-492. https://doi.org/10.1023/A:1008306431147
- Keane, A.J. (2004), "Design search and optimization using radial basis functions with regression capabilities", ParmeeIC Berlin, 39-49.
- Kim, Y.Y. and Kapania, R.K. (2003), "Neural networks for inverse problems in damage identification and optical imaging", AIAA J., 41(4), 732-740. https://doi.org/10.2514/2.2004
- Kiranyaz, S., Ince, T., Yildirim, A. and Gabbouj, M. (2009), "Evolutionary artificial neural networks by multi dimensional particle swarm optimization", Neural Networks, 22(10), 1448-1462. https://doi.org/10.1016/j.neunet.2009.05.013
- Leary, S., Bhaskar, A. and Keane, A. (2003), "Optimal orthogonal array based latin hypercubes", J. Appl. Statist., 30(5), 585-598. https://doi.org/10.1080/0266476032000053691
- Matheron, G. (1963), "Principles of geostatics", Economic Geol., 58(8), 1246-1266. https://doi.org/10.2113/gsecongeo.58.8.1246
- McKay, M., Conover, W. and Beckman, R. (1979), "A comparison of three methods for selecting values of input variables in the analysis of output from a computer code", Technometrics, 42(1), 239-245.
- Michler, A. and Heinrich, R. (2012), "Surrogate-enhanced simulation of aircraft in trimmed state", Comput. Meth. Appl. Mech. Eng., 217-220, 96-110. https://doi.org/10.1016/j.cma.2012.01.010
- Mulani, S.B., Slemp, W.C.H. and Kapania, R.K. (2010), "Curvilinear stiffened panel optimization framework for multiple load cases", 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Fort Worth, Texas.
- Mulani, S.B., Slemp, W.C.H. and Kapania, R.K. (2012), "EBF3PanelOpt: An overview and recent developments of an optimization framework for stiffened panel using curvilinear stiffeners", AeroMat 2012 Conference and Exposition, Charlotte, NC.
- Mulani, S.B., Slemp, W.C.H. and Kapania, R.K. (2013), "EBF3PanelOpt: An optimization framework for curvilinear blade-stiffened panels", Thin-Wall. Struct., 63, 13-26.
- Myers, R.H. and Montgomery, D.C. (1995), Response surface methodology-process and product optimization using designed experiment, New York: Wiley.
- Niu, M.C.Y. (2005), Airframe stress analysis and sizing, Technical Book Company.
- Palmer, K. and Tsui, K. (2001), "A minimum bias latin hypercube design", IIE Trans, 33(9), 793-808. https://doi.org/10.1080/07408170108936873
- Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vidyanathan, R. and Tucker, P.K. (2005), "Surrogate based analysis and optimization", Prog. Aero. Sci., 41(1), 1-28. https://doi.org/10.1016/j.paerosci.2005.02.001
- Rossenbrock, H.H. (1960), "An automatic method for finding the greatest or least value of a function", Comput. J., 3(3), 173-184.
- Sacks, J., Schiller, S. and Welch, W. (1989), "Designs for computer experiments", Technometrics, 31(1), 41-47. https://doi.org/10.1080/00401706.1989.10488474
- Sacks, J., Welch W., Mitchell T. and Wynn H. (1993), "Design and analysis of computer experiments", Statistic. Sci., 4, 409-423.
- Shen, Z.Q., Shi, J.B., Wang, K., Kong, F.S. and Bailey, J.S. (2004), "Neural network ensemble residual kriging application for spatial variability of soil properties", Podesphere, 14(3), 289-296.
- Sunny, M.R. and Kapania, R.K. (2013), "Damage detection in a prestressed membrane using a waveletbased neurofuzzy system", AIAA J., 51(11), 2558-2569. https://doi.org/10.2514/1.J052084
- Toal, D.J. and Keane, A.J. (2011), "Efficient multipoint aerodynamic design optimization via cokriging", J. Aircraft, 48(5), 1685-1695. https://doi.org/10.2514/1.C031342
- Vavalle, A. and Qin, N. (2007), "Iterative response surface based optimization scheme for transonic airfoil design", J. Aircraft, 44(2), 365-376. https://doi.org/10.2514/1.19688
- Venter, G., Haftka, R.T. and Starnes, J.H. (1998), "Construction of response surface approximations for design optimization", AIAA J., 36(12), 2242-2249. https://doi.org/10.2514/2.333
- Wang, H., Li, E., Li, G.Y. and Zhong, Z.H. (2008), "Development of metamodeling based optimization system for high nonlinear engineering problems", Adv. Eng. Softw., 39(8), 629-645. https://doi.org/10.1016/j.advengsoft.2007.10.001
- Welch, S.M., Roe, J.L. and Dong, Z. (2003), "A genetic neural network model of flowering time control in arabidopsis thaliana", Agronomy J., 95(1), 71-81. https://doi.org/10.2134/agronj2003.0071
- Ye, K. (1998), "Orthogonal column latin hypercubes and their application in computer experiments", J. Am. Statist. Assoc., 93(444), 1430-1439. https://doi.org/10.1080/01621459.1998.10473803
- Zaabab, A.H., Zhang, Q-L. and Nakhla, M. (1995), "A neural modeling approach to circuit optimization and statistical design", IEEE Transactions on Microwave Theory and Techniques, 43, 1349-1358. https://doi.org/10.1109/22.390193
Cited by
- Accurate modelling of lossy SIW resonators using a neural network residual kriging approach vol.14, pp.6, 2017, https://doi.org/10.1587/elex.14.20170073
- Spatial interpolation of SPT data and prediction of consolidation of clay by ANN method vol.8, pp.6, 2016, https://doi.org/10.12989/csm.2019.8.6.523
- Prediction of UCS and STS of Kaolin clay stabilized with supplementary cementitious material using ANN and MLR vol.5, pp.2, 2016, https://doi.org/10.12989/acd.2020.5.2.195
- Improving geometric construction of high resolution SAR images using Kriging-based surrogate modelling in mountainous terrain of Malaysia vol.42, pp.22, 2016, https://doi.org/10.1080/01431161.2021.1982154