References
- Baio G and Blangiardo M (2010). Bayesian hierarchical model for the prediction of football result, Journal of Applied Statistics, 37, 253-264. https://doi.org/10.1080/02664760802684177
- Bastos LS and da Rosa JMC (2013). Predicting probabilities for the 2010 FIFA world cup games using a Poisson-Gamma model, Journal of Applied Statistics, 40, 1533-1544. https://doi.org/10.1080/02664763.2013.788619
- Brillinger DR (2008). Modelling game outcomes of the Brazilian 2006 series a championship as ordinal-valued, Brazilian Journal of Probability Statistics, 22, 89-104.
- Chib S and Greenberg E (1995). Understanding the Metropolis-Hastings algorithm, The American Statistician, 49, 327-335.
- Dixon MJ and Coles SG (1997). Modelling association football scores and inefficiencies in the foot-ball betting market, Journal of the Royal Statistical Society: Series C (Applied Statistics), 46, 265-280. https://doi.org/10.1111/1467-9876.00065
- Dyte D and Clarke SR (2000). A ratings based Poisson model for World Cup soccer simulation, Journal of the Operational Research Society, 51, 993-998. https://doi.org/10.1057/palgrave.jors.2600997
- Gelman A, Carlin JB, Stern HS, and Rubin DB (1995). Bayesian Data Analysis, Chapman and Hall, London.
- Gelman A, Sturtz S, Ligges U, Gorjane G, and Kerman J (2006). The R2WinBUGS Package Manual Version 2.0-4, Statistic Department Faculty, New York.
- Gilks WR, Richardson S, and Spiegelhalter DJ (1996). Markov Chain Monte Carlo in Practice, Chapman and Hall, London.
- Hastings WK (1970). Monte Carlo sampling methods using Markov Chains and their applications, Biometrika, 57, 97-109. https://doi.org/10.1093/biomet/57.1.97
- Karlis D and Ntzoufras I (2003). Analysis of sports data by using bivariate Poisson models, Journal of the Royal Statistical Society: Series D (The Statistician), 52, 381-393. https://doi.org/10.1111/1467-9884.00366
- Karlis D and Ntzoufras I (2009). Bayesian modelling of football outcomes: using the Skellam's distribution for the goal difference, IMA Journal of Management Mathematics, 20, 133-145.
- Keller JB (1994). A characterization of the Poisson distribution and the probability of winning a game, The American Statistician, 48, 294-298.
- Knorr-Held L (2000). Dynamic rating of sports teams, Journal of the Royal Statistical Society: Series D (The Statistician), 49, 261-276. https://doi.org/10.1111/1467-9884.00236
- Koopman SJ and Lit R (2015). A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League, Journal of the Royal Statistical Society: Series A (Statistics in Society), 178, 167-186. https://doi.org/10.1111/rssa.12042
- Lee AJ (1997). Modeling scores in the Premier League: is Manchester United really the best?, Chance, 10, 15-19.
- Maher MJ (1982). Modeling association football scores, Statistica Neerlandica, 36, 109-118. https://doi.org/10.1111/j.1467-9574.1982.tb00782.x
- R Development Core Team (2012). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.
- Spiegelhalter DJ, Thomas A, Best NG, and Lunn D (2003). WinBUGS User Manual (Version 1.4.1), MRC Biostatistics Unit, Cambridge, UK.
- Suzuki AK, Salasar LEB, Leite JG, and Louzada-Neto F (2010). A Bayesian approach for predicting match outcomes: the 2006 (Association) Football World Cup, Journal of the Operational Research Society, 61, 1530-1539. https://doi.org/10.1057/jors.2009.127
- Volf P (2009). A random point process model for the score in sport matches, IMA Journal of Management Mathematics, 20, 121-131.