Acknowledgement
Grant : Vibration-based Energy Harvesting from an Aerial Vehicle via Piezoelectric Material
Supported by : Middle East Technical University
References
- Abdelkefi, A. (2016), "Aeroelastic energy harvesting: A review", Int. J. Eng. Sci., 100, 112-135. https://doi.org/10.1016/j.ijengsci.2015.10.006
- Advanced Linear Technology (2007), "EH300/EH301 EPAD(R) ENERGY HARVESTING Modules for low power applications", USA.
- Akaydin, H.D., Elvin, N. and Andreopoulos, Y. (2013), "Chapter 10, flow induced vibrations for piezoelectric energy harvesting", (Eds., Niell Elvin and Alper Erturk), Advances in Energy Harvesting Methods, pp 241-267, Springer Science and Business Media, Newyork, USA.
- Ali, M., Arafa, M. and Elaraby, M. (2013), "Harvesting energy from galloping oscillations", Proceedings of the World Congress on Engineering 2013 Vol III, WCE 2013, July 3 - 5, 2013, London, U.K.
- Amoroso, F., Pecora, R., Ciminello, M. and Concilio, A. (2015), "An original device for train bogie energy harvesting: a real application scenario", Smart Struct. Syst., 16(3), 383-399. https://doi.org/10.12989/sss.2015.16.3.383
- ANSYS Workbench 14.0 Help Manual (2011).
- Anton, S.R. (2011), "Multifunctional Piezoelectric Energy Harvesting Concepts", PhD Dissertation, University of Virginia Tech, USA.
- APC International (2011), Piezoelectric Ceramics: Principles and Application (Paperback), Mackeyville, PA USA.
- Arms, S.W., Townsend, C.P., Churchill, D.L., Galbreath, J.H., Corneau, B., Ketcham, R.P. and Phan, N. (2008), "Energy harvesting, wireless, structural health monitoring and reporting system", Proceedings of the 2nd Asia Pacific Workshop on SHM, Melbourne.
- Available at: www.bksv.com/Products/transducers/vibration/accelerometers/accelerometers/4517.aspx (accessed in July 2015)
- Available at: www.bksv.com/Products/transducers/vibration/impact-hammers/8206.aspx (accessed in July 2015).
- Bae, J.S. and Inman, D.J. (2013), "Aeroelastic characteristics of linear and nonlinear piezo-aeroelastic energy harvester", J. Intel. Mat. Syst. Str., 1-16.
- Bruel&Kjaer PULSE Software Help Manual (2014).
- Bryant, M. and Garcia, E. (2011), "Modeling and testing of a novel aeroelastic flutter energy harvester", J. Vib. Acoust., 133, 011010 (11pp). https://doi.org/10.1115/1.4002788
- Dai, H L., Abdelkefi, A. and Wang, L. (2014), "Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations", J. Intel. Mat. Syst. Str., 1-14, doi:10.1177/1045389X14538329.
- Dai, H.L., Abdelkefi, A. and Wang, L. (2014), "Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations", Nonlinear Dynam., 77, 967-981. https://doi.org/10.1007/s11071-014-1355-8
- Erturk, A. (2011), Piezoelectric Energy Harvesting, John Wiley and Sons, West Sussex, United Kingdom
- Erturk, A., Vieira, W.G.R., De Marqui, Jr., C. and Inman, D.J. (2010), "On the energy harvesting potential of piezoaeroelastic system", Appl. Phys. Lett., 96, 184103-1-184103-3. https://doi.org/10.1063/1.3427405
- Gao, X. (2011), "Vibration and Flow Energy Harvesting using Piezoelectric", PhD Dissertation, Drexel University, USA.
- Hobeck, J.D. and Inman, D.J. (2012), "Artificial piezoelectric grass for energy harvesting from turbulence-induced vibration", Smart Mater. Struct., 21, 105024 (10pp). https://doi.org/10.1088/0964-1726/21/10/105024
- Hofmann, H. (2011), Power Electronic Circuits for Vibration-Based Energy Harvesting using Piezoelectric Devices. Available at: http://www.psma.com/sites/default/files/uploads/tech-forums-energyharvesting/presentations/2011-apec-sp-111-power-electronic-circuits-vibration-based-energy-harvesting-using-piezoelectric-dev.pdf (accessed in July 2015)
- Kahraman, E. (2011) "Investigation of the Dynamic Properties of Trapezoidal Plates", MSc. Dissertation, METU, Turkey.
- Koyvanich, K., Smithmaitrie, P. and Muensit, N. (2015), "Perspective microscale piezoelectric harvester for converting flow energy in water way", Adv. Mater. Lett., 6(6), 538-543. https://doi.org/10.5185/amlett.2015.SMS4
- Liu, H., Zhang, S., Kathiresan, R., Kobayashi, T. and Lee, C. (2012), "Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability", Appl. Phys. Lett., 100, 223905; doi: 10.1063/1.4723846
- Marqui Jr., C.D. and Erturk, A. (2012), "Electroaeroelastic analysis of airfoil-based wind energy harvesting using piezoelectric transduction and electromagnetic induction", J. Intel. Mat. Syst. Str., 24(7), 846-854. https://doi.org/10.1177/1045389X12461073
- Marqui Jr., C.D., Vieira, W.G.R., Erturk, A. and Inman, D.J. (2011), "Modeling and analysis of piezoelectric energy harvesting from aeroelastic vibrations using the doublet-lattice method", J. Vib. Acoust., 133, 011003-1 (9pp). https://doi.org/10.1115/1.4002785
- Mehmood, A., Abdelkefi, A., Hajj, M.R., Nayfeh, A.H., Akhtar, I. and Nuhait, A.O. (2013), "Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder", J. Sound Vib., 332, 4656-4667. https://doi.org/10.1016/j.jsv.2013.03.033
- Mercan, B., Ostovan, Y., Dogan, E. and Uzol. O. (2010), "Effect of chordwise modulated waveform tip injection on the characteristics of the tip vortex", Proceedings of the 40th Fluid Dynamics Conference and Exhibit, Chicago, Illinois, USA
- National Instrument Data Acquisition System Help Manual (2014).
- National Instrument Signal Express Software Help Manual (2014).
- Sarioglu, M. and Yavuz, T. (2000), "Vortex shedding from circular and rectangular cylinders place horizontally in a turbulent flow", Turk J. Engin. Environ. Sci., 24, 217-28.
- Shan, X., Song, R., Liu, B. and Xie, T. (2015), "Novel energy harvesting: A macro fiber composite piezoelectric energy harvester in the water vortex", Ceramics Int., 41, 763-767. https://doi.org/10.1016/j.ceramint.2015.03.219
- Smart Material Corp (2012), Macro Fiber Composite - MFC.
- Smart Material Corp. (2012), "Energy Harvester Development Kit", Germany.
- Song, R., Shan, X., Lv, F., Li, J. and Xie, T. (2015), "A novel piezoelectric energy harvester using the macro fiber composite cantilever with a bicylinder in water", Appl. Sci., 5, 1942-1954. https://doi.org/10.3390/app5041942
- Sousa, V.C., Anicezio, M.D.M., Marqui Jr., C.D. and Erturk, A. (2011), "Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment", Smart Mater. Struct., 20, 094007 (8pp). https://doi.org/10.1088/0964-1726/20/9/094007
- Techet, A.H. (2010), "Vortex Induced Vibration- Lecture Notes", Massachusetts Institute of Technology, USA.
- Wang, H., Tang, L., Shan, X., Xie, T. and Yang, Y. (2014), "Modeling and performance evaluation of a Piezoelectric Energy Harvester with segmented electrodes", Smart Struct. Syst., 14(2), 247-266. https://doi.org/10.12989/sss.2014.14.2.247
- Zhu, D. (2011), "Chapter 2: Vibration Energy Harvesting: Machinery Vibration, Human Movement and Flow Induced Vibration", www.intechopen.com.
- Zhu, D., Beeby, S., Tudor, J., White, N. and Harris, N. (2010), "A novel miniature wind generator for wireless sensing applications", Proceedings of the IEEE Sensors 2010, ISBN 978-1-4244-8170-5, Waikoloa, Hawaii, USA.
Cited by
- Design and evaluation of an experimental system for monitoring the mechanical response of piezoelectric energy harvesters vol.22, pp.2, 2018, https://doi.org/10.12989/sss.2018.22.2.133
- Optimization of the shaping function of a tapered piezoelectric energy harvester using tabu continuous ant colony system vol.30, pp.20, 2016, https://doi.org/10.1177/1045389x19873391