DOI QR코드

DOI QR Code

Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer

  • Yeh, Jia-Yi (Department of Information Management, Chung Hwa University of Medical Technology)
  • 투고 : 2014.12.08
  • 심사 : 2016.04.21
  • 발행 : 2016.08.25

초록

The vibration characteristic analysis of sandwich cylindrical shells subjected with magnetorheological (MR) elastomer and constraining layer are considered in this study. And, the discrete finite element method is adopted to calculate the vibration and damping characteristics of the sandwich cylindrical shell system. The effects of thickness of the MR elastomer, constraining layer, applied magnetic fields on the vibration characteristics of the sandwich shell system are also studied in this paper. Additionally, the rheological properties of the MR elastomer can be changed by applying various magnetic fields and the properties of the MR elastomer are described by complex quantities. The natural frequencies and modal loss factor of the sandwich cylindrical shells are calculated for many designed parameters. The core layer of MR elastomer is found to have significant effects on the damping behavior of the sandwich cylindrical shells.

키워드

참고문헌

  1. Aguib, S., Nour, A., Zahloul, H., Bossis, G., Chevalier, Y. and Lançon, P. (2014), "Dynamic behavior analysis of a magnetorheological elastomer sandwich plate", Int. J. Mech. Sci., 87, 118-136. https://doi.org/10.1016/j.ijmecsci.2014.05.014
  2. Bellan, C. and Bossis, G. (2002), "Filed dependence of viscoelastic properties of magnetorheological elastomers", Int. J. Modern Phys. B, 16(17-18), 2447-2453. https://doi.org/10.1142/S0217979202012499
  3. Bert, C.W., Baker, J.L. and Egle, D.M. (1969), "Free vibrations of multilayered anisotropic cylindrical shells", J. Compo. Mater., 3(3), 480-499 https://doi.org/10.1177/002199836900300312
  4. Chen, L.H. and Huang, S.C. (1999), "Vibrations of a cylindrical shell with partially constrained layer damping (CLD) treatment", Int. J. Mech. Sci., 41(12), 1485-1498. https://doi.org/10.1016/S0020-7403(98)00102-7
  5. Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1998), "An experimental study of MR dampers on seismic protection", Smart Mater. Struct., 7(5), 693-703. https://doi.org/10.1088/0964-1726/7/5/012
  6. EI-Raheb, M. and Wagner, P. (1986), "Damped response of shell by a constrained viscoelastic layer", J. Appl. Mech.- ASME, 53(4), 902-908. https://doi.org/10.1115/1.3171879
  7. Ganapathi, M., Patel, B.P. and Pawargi, D.S. (2002), "Dynamic analysis of laminated cross-ply composite non-circular thick cylindrical shells using higher-order theory", Int. J. Solids Struct., 39(24), 5945-5962. https://doi.org/10.1016/S0020-7683(02)00495-X
  8. Ip, K.H., Chan, W.K., Tse, P.C. and Lai, T.C. (1996), "Vibration analysis of orthotropic thin cylindrical shells with free ends by the Rayleigh-Ritz method", J. Sound Vib., 195(1), 117-135. https://doi.org/10.1006/jsvi.1996.0407
  9. Jolly, M.R., Carlson, J.D., Munoz, B.C. and Bullions, A. (1996), "The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix", J. Intel. Mat. Syst. Str., 7(6), 613-622. https://doi.org/10.1177/1045389X9600700601
  10. Markus, S. (1976), "Damping properties of layered cylindrical shells, vibrating in axially symmetric modes", J. Sound Vib., 48, 511-524. https://doi.org/10.1016/0022-460X(76)90553-8
  11. Mead, D.J. and Markus, S. (1969), "The forced vibrations of a three-layer damped sandwich beam with arbitrary boundary conditions", AIAA J., 10(2), 163-175.
  12. Nayak, B., Dwivedy, S.K. and Murthy, K.S.R.K. (2011), "Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions", J. Sound Vib., 330(9), 1837-1859. https://doi.org/10.1016/j.jsv.2010.10.041
  13. Pan, H.H. (1969), "Axisymmetrical vibrations of a circular sandwich shell with a viscoelastic core layer", J. Sound Vib., 9(2), 338-348. https://doi.org/10.1016/0022-460X(69)90038-8
  14. Rabinow, J. (1951), "Magnetic Fluid Torque and Force Transmitting Device", U.S.Patent.
  15. Rajamohan, V., Rakheja, S. and Sedaghati, R. (2010), "Vibration analysis of a partially treated multi-layer beam with magnetorheological fluid", J. Sound Vib., 329(17), 3451-3469. https://doi.org/10.1016/j.jsv.2010.03.010
  16. Rajamohan, V. and Ramamoorthy, M. (2012), "Dynamic characterization of non-homogeneous magnetorheological fluids based multi-layer beam", Appl. Mech. Mater., 110-116, 105-112.
  17. Ramesh, T.C. and Ganesan, N. (1994), "Orthotropic cylindrical shells with a viscoelastic core: a vibration and damping analysis", J. Sound Vib., 175(4), 535-555. https://doi.org/10.1006/jsvi.1994.1344
  18. Ross, D., Ungar, E.E. and Kerwin, E.M. (1959), "Damping of plate flexural vibrations by means of viscoelastic laminae", In: Ruzicka JE, editor. Structural damping: colloquium on structural damping. ASME Annual Meeting, 48-87.
  19. Saravanan, C., Ganesan, N. and Ramamurti, V. (2000), "Study on energy dissipation pattern in vibrating fluid filled cylindrical shells with a constrained viscoelastic layer", Comput. Struct., 75, 575-591. https://doi.org/10.1016/S0045-7949(99)00114-5
  20. Shiga, T., Okada, A. and Kurauchi, T. (1995), "Magnetoviscoelastic behavior of composite gels", J. Applied Poly. Sci., 58, 787-792. https://doi.org/10.1002/app.1995.070580411
  21. Sun, Q., Zhou, J.X. and Zhang, L. (2003), "An adaptive beam model and dynamic characteristics of magnetorheological materials", J. Sound Vib., 261(3), 465-481. https://doi.org/10.1016/S0022-460X(02)00985-9
  22. Weiss, K.D., Carlson, J.D. and Nixon, D.A. (1994), "Viscoelastic properties of magneto-and electro-rheological fluids", J. Intel. Mat. Str., 5(6), 772-775. https://doi.org/10.1177/1045389X9400500607
  23. Yalcintas, M. and Dai, H. (1999), "Magnetorheological and electrorheological materials in adaptive structures and their performance comparison", Smart Mater. Struct., 8(5), 560-573. https://doi.org/10.1088/0964-1726/8/5/306
  24. Yeh, Z.F. and Shih, Y.S. (2006), "Dynamic characteristics and dynamic instability of magnetorheological based adaptive beams", J. Compos. Mater., 40(15), 1333-1359. https://doi.org/10.1177/0021998306059715
  25. Ying, Z.G. and Ni, Y.Q. (2009), "Micro-vibration response of a stochastically excited sandwich beam with a magnetorheological elastomer core and mass", Smart Mater. Struct., 18(9), 095005. https://doi.org/10.1088/0964-1726/18/9/095005
  26. Zhou, G.Y. and Wang, Q. (2006), "Study on the adjustable rigidity of magnetorheological-elastomer-based sandwich beams", Smart Mater. Struct., 15(1), 59-74. https://doi.org/10.1088/0964-1726/15/1/035

피인용 문헌

  1. Effect of Pasternak foundation: Structural modal identification for vibration of FG shell vol.9, pp.6, 2020, https://doi.org/10.12989/acc.2020.9.6.569
  2. Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.809
  3. Dynamic Behavior of Sandwich Structures with Magnetorheological Elastomer: A Review vol.14, pp.22, 2021, https://doi.org/10.3390/ma14227025