References
- Aguib, S., Nour, A., Zahloul, H., Bossis, G., Chevalier, Y. and Lançon, P. (2014), "Dynamic behavior analysis of a magnetorheological elastomer sandwich plate", Int. J. Mech. Sci., 87, 118-136. https://doi.org/10.1016/j.ijmecsci.2014.05.014
- Bellan, C. and Bossis, G. (2002), "Filed dependence of viscoelastic properties of magnetorheological elastomers", Int. J. Modern Phys. B, 16(17-18), 2447-2453. https://doi.org/10.1142/S0217979202012499
- Bert, C.W., Baker, J.L. and Egle, D.M. (1969), "Free vibrations of multilayered anisotropic cylindrical shells", J. Compo. Mater., 3(3), 480-499 https://doi.org/10.1177/002199836900300312
- Chen, L.H. and Huang, S.C. (1999), "Vibrations of a cylindrical shell with partially constrained layer damping (CLD) treatment", Int. J. Mech. Sci., 41(12), 1485-1498. https://doi.org/10.1016/S0020-7403(98)00102-7
- Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1998), "An experimental study of MR dampers on seismic protection", Smart Mater. Struct., 7(5), 693-703. https://doi.org/10.1088/0964-1726/7/5/012
- EI-Raheb, M. and Wagner, P. (1986), "Damped response of shell by a constrained viscoelastic layer", J. Appl. Mech.- ASME, 53(4), 902-908. https://doi.org/10.1115/1.3171879
- Ganapathi, M., Patel, B.P. and Pawargi, D.S. (2002), "Dynamic analysis of laminated cross-ply composite non-circular thick cylindrical shells using higher-order theory", Int. J. Solids Struct., 39(24), 5945-5962. https://doi.org/10.1016/S0020-7683(02)00495-X
- Ip, K.H., Chan, W.K., Tse, P.C. and Lai, T.C. (1996), "Vibration analysis of orthotropic thin cylindrical shells with free ends by the Rayleigh-Ritz method", J. Sound Vib., 195(1), 117-135. https://doi.org/10.1006/jsvi.1996.0407
- Jolly, M.R., Carlson, J.D., Munoz, B.C. and Bullions, A. (1996), "The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix", J. Intel. Mat. Syst. Str., 7(6), 613-622. https://doi.org/10.1177/1045389X9600700601
- Markus, S. (1976), "Damping properties of layered cylindrical shells, vibrating in axially symmetric modes", J. Sound Vib., 48, 511-524. https://doi.org/10.1016/0022-460X(76)90553-8
- Mead, D.J. and Markus, S. (1969), "The forced vibrations of a three-layer damped sandwich beam with arbitrary boundary conditions", AIAA J., 10(2), 163-175.
- Nayak, B., Dwivedy, S.K. and Murthy, K.S.R.K. (2011), "Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions", J. Sound Vib., 330(9), 1837-1859. https://doi.org/10.1016/j.jsv.2010.10.041
- Pan, H.H. (1969), "Axisymmetrical vibrations of a circular sandwich shell with a viscoelastic core layer", J. Sound Vib., 9(2), 338-348. https://doi.org/10.1016/0022-460X(69)90038-8
- Rabinow, J. (1951), "Magnetic Fluid Torque and Force Transmitting Device", U.S.Patent.
- Rajamohan, V., Rakheja, S. and Sedaghati, R. (2010), "Vibration analysis of a partially treated multi-layer beam with magnetorheological fluid", J. Sound Vib., 329(17), 3451-3469. https://doi.org/10.1016/j.jsv.2010.03.010
- Rajamohan, V. and Ramamoorthy, M. (2012), "Dynamic characterization of non-homogeneous magnetorheological fluids based multi-layer beam", Appl. Mech. Mater., 110-116, 105-112.
- Ramesh, T.C. and Ganesan, N. (1994), "Orthotropic cylindrical shells with a viscoelastic core: a vibration and damping analysis", J. Sound Vib., 175(4), 535-555. https://doi.org/10.1006/jsvi.1994.1344
- Ross, D., Ungar, E.E. and Kerwin, E.M. (1959), "Damping of plate flexural vibrations by means of viscoelastic laminae", In: Ruzicka JE, editor. Structural damping: colloquium on structural damping. ASME Annual Meeting, 48-87.
- Saravanan, C., Ganesan, N. and Ramamurti, V. (2000), "Study on energy dissipation pattern in vibrating fluid filled cylindrical shells with a constrained viscoelastic layer", Comput. Struct., 75, 575-591. https://doi.org/10.1016/S0045-7949(99)00114-5
- Shiga, T., Okada, A. and Kurauchi, T. (1995), "Magnetoviscoelastic behavior of composite gels", J. Applied Poly. Sci., 58, 787-792. https://doi.org/10.1002/app.1995.070580411
- Sun, Q., Zhou, J.X. and Zhang, L. (2003), "An adaptive beam model and dynamic characteristics of magnetorheological materials", J. Sound Vib., 261(3), 465-481. https://doi.org/10.1016/S0022-460X(02)00985-9
- Weiss, K.D., Carlson, J.D. and Nixon, D.A. (1994), "Viscoelastic properties of magneto-and electro-rheological fluids", J. Intel. Mat. Str., 5(6), 772-775. https://doi.org/10.1177/1045389X9400500607
- Yalcintas, M. and Dai, H. (1999), "Magnetorheological and electrorheological materials in adaptive structures and their performance comparison", Smart Mater. Struct., 8(5), 560-573. https://doi.org/10.1088/0964-1726/8/5/306
- Yeh, Z.F. and Shih, Y.S. (2006), "Dynamic characteristics and dynamic instability of magnetorheological based adaptive beams", J. Compos. Mater., 40(15), 1333-1359. https://doi.org/10.1177/0021998306059715
- Ying, Z.G. and Ni, Y.Q. (2009), "Micro-vibration response of a stochastically excited sandwich beam with a magnetorheological elastomer core and mass", Smart Mater. Struct., 18(9), 095005. https://doi.org/10.1088/0964-1726/18/9/095005
- Zhou, G.Y. and Wang, Q. (2006), "Study on the adjustable rigidity of magnetorheological-elastomer-based sandwich beams", Smart Mater. Struct., 15(1), 59-74. https://doi.org/10.1088/0964-1726/15/1/035
Cited by
- Effect of Pasternak foundation: Structural modal identification for vibration of FG shell vol.9, pp.6, 2020, https://doi.org/10.12989/acc.2020.9.6.569
- Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.809
- Dynamic Behavior of Sandwich Structures with Magnetorheological Elastomer: A Review vol.14, pp.22, 2021, https://doi.org/10.3390/ma14227025