DOI QR코드

DOI QR Code

Hydrogen Embrittlement of Two Austenitic High-Manganese Steels Using Tensile Testing under High-Pressure Gaseous Hydrogen

고압 수소 가스 하 인장 시험을 이용한 두 오스테나이트계 고망간강의 수소취화 특성 평가

  • Lee, Seung-Yong (Department of Materials Science and Engineering Seoul National University of Science and Technology) ;
  • Baek, Un-Bong (Division of Industrial Metrology Korea Research Institute of Standards and Science) ;
  • Nam, Seung Hoon (Division of Industrial Metrology Korea Research Institute of Standards and Science) ;
  • Hwang, Byoungchul (Department of Materials Science and Engineering Seoul National University of Science and Technology)
  • 이승용 (서울과학기술대학교 신소재공학과) ;
  • 백운봉 (한국표준과학연구원 산업측정표준본부) ;
  • 남승훈 (한국표준과학연구원 산업측정표준본부) ;
  • 황병철 (서울과학기술대학교 신소재공학과)
  • Received : 2016.04.25
  • Accepted : 2016.05.16
  • Published : 2016.07.27

Abstract

The hydrogen embrittlement of two austenitic high-manganese steels was investigated using tensile testing under high-pressure gaseous hydrogen. The test results were compared with those of different kinds of austenitic alloys containing Ni, Mn, and N in terms of stress and ductility. It was found that the ultimate tensile stress and ductility were more remarkably decreased under high-pressure gaseous hydrogen than under high-pressure gaseous argon, unlike the yield stress. In the specimens tested under high-pressure gaseous hydrogen, transgranular fractures were usually observed together with intergranular cracking near the fracture surface, whereas in those samples tested under high-pressure gaseous argon, ductile fractures mostly occurred. The austenitic high-manganese steels showed a relatively lower resistance to hydrogen embrittlement than did those with larger amounts of Ni because the formation of deformation twins or microbands in austenitic high-manganese steels probably promoted planar slip, which is associated with localized deformation due to gaseous hydrogen.

Keywords

References

  1. T. Michler, A. A. Yukhimchuk and J. Naumann, Corr. Sci., 50, 3519 (2008). https://doi.org/10.1016/j.corsci.2008.09.025
  2. D. S. Bae, C. E. Sung, H. J. Bang, S. P. Lee, J. K. Lee, I. S. Son, Y. R. Cho, U. B. Baek and S. H. Nahm, Met. Mater. Int., 20, 653 (2014). https://doi.org/10.1007/s12540-014-4010-5
  3. L. Zhang, M. Wen, M. Imade, S. Fukuyama and K. Yokogawa, Acta Mater., 56, 3414 (2008). https://doi.org/10.1016/j.actamat.2008.03.022
  4. T. Omura and J. Nakamura, ISIJ Int., 52, 234 (2012). https://doi.org/10.2355/isijinternational.52.234
  5. G. Han, S. He, S. Fukuyama and K. Yokogawa, Acta Mater., 46, 4559 (1998). https://doi.org/10.1016/S1359-6454(98)00136-0
  6. T. Michler and J. Naumann, Int. J. Hydrogen Energy, 33, 2111 (2008). https://doi.org/10.1016/j.ijhydene.2008.02.021
  7. Y. H. Kim, J. H. Kim, T. H. Hwang, J. Y. Lee and C. Y. Kang, Met. Mater. Int., 21, 485 (2015). https://doi.org/10.1007/s12540-015-4480-0
  8. B. Kim, T. T. T. Trang and H. J. Kim, Met. Mater. Int., 20, 35 (2014). https://doi.org/10.1007/s12540-014-1009-x
  9. B. Hwang, T. H. Lee, S. J. Park, C. S. Oh and S. J. Kim, Mater. Sci. Eng. A, 528, 7257 (2011). https://doi.org/10.1016/j.msea.2011.06.025
  10. T. Michler, C. San Marchi, J. Naumann, S. Weber and M. Martin, Int. J. Hydrogen Energy, 37, 16231 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.071
  11. M. P. Phaniraj, H. J. Kim, J. Y. Suh, J. H. Shim, S. J. Park and T. H. Lee, Int. J. Hydrogen Energy, 40, 13635 (2015). https://doi.org/10.1016/j.ijhydene.2015.07.163
  12. J. E. Jung, J. Park, J. S. Kim, J. B. Jeon, S. K. Kim amd Y. W. Chang, Met. Mater. Int., 20, 27 (2014). https://doi.org/10.1007/s12540-014-1008-y
  13. M. Jo, Y. M. Koo and S. K. Kwon, Met. Mater. Int., 21, 227 (2015). https://doi.org/10.1007/s12540-015-4320-2
  14. A. Dumay, J. -P. Chateau, S. Allain, S. Migot and O. Bouaziz, Mater. Sci. Eng. A, 483, 184 (2008).
  15. E. Mazancova and K. Mazanec, Mater. Eng., 16, 26 (2009).
  16. ASTM Standard G142-98, ASTM International, West Conshohocken, PA, USA, (2011).
  17. B. C. De Cooman, J. K. Kim and K. H. Chin, High Mn TWIP Steels for Automotive Applications, INTECH Open Access Publisher (2011).
  18. A. R. Troiano, Trans. ASM, 52, 54 (1960).
  19. C. D. Beachem, Metall. Trans., 3, 437 (1972).
  20. C. San Marchi, T. Michler, K. A. Nibur and B. P. Somerday, Int. J. Hydrogen Energy, 35, 9736 (2010). https://doi.org/10.1016/j.ijhydene.2010.06.018
  21. M. Martin, S. Weber, W. Theisen, T. Michler and J. Naumann, Int. J. Hydrogen Energy, 36, 15888 (2011). https://doi.org/10.1016/j.ijhydene.2011.09.013
  22. V. G. Gavriljuk, V. N. Shyvanyuk and S. M. Teus, Mater. Sci. Forum, 638, 104 (2010).