
Bull. Korean Math. Soc. 53 (2016), No. 4, pp. 1259–1280
http://dx.doi.org/10.4134/BKMS.b150666
pISSN: 1015-8634 / eISSN: 2234-3016

EQUIVALENCE CONDITIONS OF SYMMETRY PROPERTIES

IN LIGHTLIKE HYPERSURFACES OF INDEFINITE

KENMOTSU MANIFOLDS

Oscar Lungiambudila, Fortuné Massamba, and Joel Tossa

Abstract. The paper deals with lightlike hypersurfaces which are lo-
cally symmetric, semi-symmetric and Ricci semi-symmetric in indefinite
Kenmotsu manifold having constant φ-holomorphic sectional curvature c.
We obtain that these hypersurfaces are totally goedesic under certain con-
ditions. The non-existence condition of locally symmetric lightlike hyper-
surfaces are given. Some Theorems of specific lightlike hypersurfaces are
established. We prove, under a certain condition, that in lightlike hyper-
surfaces of an indefinite Kenmotsu space form, tangent to the structure
vector field, the parallel, semi-parallel, local symmetry, semi-symmetry
and Ricci semi-symmetry notions are equivalent.

1. Introduction

It is natural to impose condition on semi-Riemannian manifold that its Rie-
mannian curvature tensor R be parallel, that is, have vanishing covariant differ-
ential, ∇R, where ∇ is the Levi-Civita connection on semi-Riemannian man-
ifold and R is the corresponding curvature tensor. Such a manifold is said
to be locally symmetric. This class of manifolds contains one of manifolds of
constant curvature. A semi-Riemannian manifold is called semi-symmetric, if
R ·R = 0, which is the integrability condition of ∇R = 0. The semi-symmetric
manifolds have been classified, in Riemannian case, by Szabo in [20] and [21].
A semi-Riemannian manifold is called Ricci semi-symmetric, if R ·Ric = 0.

We are interested to answer to the following question: “Are conditions∇R =
0, R·R = 0 and R·Ric equivalent on lightlike hypersurfaces of semi-Riemannian
manifolds?” These equivalences are not true in general. Ryan [18] raised the
following question for hypersurfaces of Euclidean spaces in 1972: Are conditions
R · R = 0 and R · Ric = 0 equivalent for hypersurfaces of Euclidean spaces?
Although there are many results which contributed to the solution of the above
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question in the affirmative under some conditions (see [6], [7], [17] and references
therein). In [1], the authors gave an explicit example of a hypersurface in
Euclidean En+1(n > 4) that is Ricci semi-symmetric but not semi-symmetric
(see [5] for another example). This result shows that the conditions R · R = 0
and R ·Ric = 0 also are not equivalent for hypersurfaces of Euclidean space in
general. In [5] a survey on Ricci semi-symmetric spaces and contributions to
the solution of above problem are given.

In virtue of results given by Günes, Sahin and Kilic ([10], Theorem 3.1) and
Sahin ([19], Theorem 4.2), we see that the conditions ∇R = 0 and R ·R = 0 are
equivalent for lightlike hypersurfaces of semi-Euclidean space under conditions
Ric(E,X) = 0 and ANE a vector field non-null. In [14], the authors show that
∇R = 0 and R · R = 0 are equivalent for lightlike hypersurfaces of indefinite
Sasakian space form under condition ANE a vector field non-null. Also in
[14], this equivalence is extended to the Ricci semi-symmetric notion when
the lightlike hypersurfaces are considered to be η-totally umbilical. In [16], the
author proved that, in the null Einstein hypersurfaces of an indefinite Kenmotsu
space form, tangent to the structure vector field, the local symmetry, semi-
symmetry and Ricci semi-symmetry notions are equivalent.

In the present paper we give an affirmative answer to the equivalence between
∇R = 0 and R · R = 0 for lightlike hypersurfaces of an indefinite Kenmotsu
space form M(c), under condition Ric(E, ζ) 6= 0, for some ζ ∈ Γ(S(TM))−〈ξ〉
(Theorem 5.8). This equivalence is extended to the parallel, semi-parallel and
Ricci semi-symmetric notions under condition Ric(E,ANE) 6= 0 (Theorem
6.5).

The general theory of lightlike submanifolds was introduced and presented
in [9] by K. L. Duggal and A. Bejancu. The theory of lightlike submanifolds
is a new area of differential geometry and it is very different from Riemannian
geometry as well as semi-Riemannian geometry.

In the present paper, we study the symmetry properties of lightlike hyper-
surfaces in indefinite Kenmotsu manifolds M

c
, tangent to the structure vector

field, by particularly paying attention to the locally symmetric, semi-symmetric
and Ricci semi-symmetric lightlike hypersurfaces. The paper is organised as
follows. In Section 2, we recall some basic definitions and formulas for indefinite
Kenmotsu manifolds supported by an example and also for lightlike hypersur-
faces of semi-Riemannian manifolds. In Section 3, we give the decomposition
of screen distribution and tangent bundle on lightlike hypersurfaces of indefi-
nite Kenmotsu manifolds which are tangential to the structure vector field. In
Section 4, we consider a lightlike hypersurface M of an indefinite Kenmotsu
manifold M

c
, with constant φ-holomorphic sectional curvature c and study

local symmetry conditions on this hypersurface. It is known in [10] that in lo-
cally symmetric semi-Riemannian manifold M , the locally symmetric lightlike
hypersurfaces are totally geodesic, under condition that the vector field ANE



EQUIVALENCE CONDITIONS OF SYMMETRY PROPERTIES 1261

is non-null. Here we show that there are no locally symmetric lightlike hyper-
surfaces in indefinite Kenmotsu manifold (M

c
, c 6= −1). On the other hand we

prove that, in indefinite Kenmotsu space form M (c = −1), any locally sym-
metric lightlike hypersurface is totally geodesic (Theorem 4.5). An example of
locally symmetric lightlike hypersurface is given. We also prove, in the same
section, that totally contact umbilical lightlike hypersurfaces of an indefinite
Kenmotsu manifold which are locally symmetric are totally geodesic (Theorem
4.8). We obtain equivalence between parallel and locally symmetry notions on

lightlike hypersurfaces of an indefinite Kenmotsu manifold M
c
(Theorem 4.10).

In Section 5, we study semi-symmetric lightlike hypersurfaces of indefinite Ken-
motsu manifolds M

c
. We give a characterization of semi-symmetric lightlike

hypersurfaces and We prove, under a certain condition, that in lightlike hyper-
surfaces of an indefinite Kenmotsu space form, tangent to the structure vector
field, the local symmetry and semi-symmetry notions are equivalent (Theorem
5.8). Also this equivalence is extended to the semi-parallel notion (Theorem
5.10). We also give a sufficient condition on lightlike hypersurface of indefi-
nite Kenmotsu space form to be not semi-symmetric (Corollary 5.7). Finally,
in Section 6, we give a characterization of Ricci semi-symmetric lightlike hy-
persurfaces of an indefinite Kenmotsu manifold M

c
, tangent to the structure

vector field. We show that, under a certain condition, the Ricci semi-symmetric
lightlike hypersurfaces of indefinite Kenmotsu space form M(c) are totaly ge-
odesic (Theorem 6.2). In Theorem 6.5, under a certain condition, we extend
the equivalence given in Theorem 5.8 to Ricci semi-symmetry notion. Finally,
we obtain under certain condition, the equivalence between the parallel, semi-
parallel, local symmetry, semi-symmetry and Ricci semi-symmetry notions in
hypersurfaces of an indefinite Kenmotsu space form (Theorem 6.5).

2. Preliminaries

Let M a (2n + 1)-dimensional manifold endowed with an almost contact
structure (φ, ξ, η), i.e., φ is a tensor field of type (1, 1), ξ is a vector field, and
η is a 1-form satisfying

(2.1) φ
2
= −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0, φ(ξ) = 0 and rank φ = 2n.

Then (φ, ξ, η, g) is called an almost contact metric structure on M if (φ, ξ, η)
is an almost contact structure on M and g is a semi-Riemannian metric on M

such that for any vector field X,Y on M

(2.2) η(X) = g(ξ,X), g(φX, φY ) = g(X,Y )− η(X)η(Y ).

If moreover, (∇Xφ)Y = g(φX, Y )ξ − η(Y )φX, therefore ∇Xξ = X − η(X)ξ,

and (∇Xη)Y = g(X,Y ) − η(X)η(Y ), where ∇ is the Levi-Civita connection

for the semi-Riemannian metric g, we call M an indefinite Kenmotsu manifold
[12].
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A plane section σ in TpM is called a φ-section if it is spanned by X and

φX , where X is a unit tangent vector field orthogonal to ξ. Since φσ = σ,
the φ-section σ is a holomorphic φ-section and the sectional curvature of a
φ-section σ is called a φ-holomorphic sectional curvature (see [3], [11] and

references therein for more details). If a Kenmotsu manifold M has constant φ-
holomorphic sectional curvature c, then, by virtue of the Proposition 12 in [12],
the Riemann curvature tensor R of M is given by, for any X,Y , Z ∈ Γ(TM),

R(X,Y )Z =
c− 3

4
{g(Y , Z)X − g(X,Z)Y }+

c+ 1

4
{η(X)η(Z)Y

− η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y , Z)η(X)ξ

+ g(φY , Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ}.(2.3)

A Kenmotsu manifold is a typical example of C(α)-manifold, with α = −1,
introduced by Janssens and Vanhecke [11].

Note that the φ-holomorphic sectional curvature of an indefinite C(α)-mani-
fold does not satisfy, in general, a “Schur Lemma” although it holds for co-
Kähler and indefinite Sasakian manifolds (see [3] for details).

An indefinite Kenmotsu manifold M which has constant φ-holomorphic sec-
tional curvature c will be denoted by M

c
. A Kenmotsu manifold M of constant

φ-holomorphic sectional curvature c will be called Kenmotsu space form and
denoted by M(c). Here M

c
is different from M(c) and this is well specified in

[12] through Proposition 12 and Theorem 13.
If a (2n+ 1)-dimensional Kenmotsu manifold M has a constant φ-holomor-

phic sectional curvature c, then, by virtue of Proposition 12 [12], the Ricci
tensor Ric and the scalar curvature r are given by [12]

Ric =
1

2
(n(c− 3) + c+ 1)g −

1

2
(n+ 1)(c+ 1)η ⊗ η,(2.4)

r =
1

2
(n(2n+ 1)(c− 3)− n(c+ 1)).(2.5)

This means that M
c
is η-Einstein. But if M becomes a space of constant

φ-holomorphic sectional curvature c, that is, a Kenmotsu space form M(c),
the Riemann curvature tensor of M(c) has also the form given in (2.3) with c

constant which implies, through the Eq. (2.4), that M(c) is η-Einstein. Since
the coefficients of Ric are constant on M(c), by Corollary 9 in [12], M is an
Einstein one and consequently c + 1 = 0, that is c = −1. So, the Ricci tensor
becomes Ric = −2ng and the scalar curvature is given by r = −2n(2n+ 1).

Thus, if a Kenmotsu manifold M is a space form, then it is an Einstein and
c = −1. This means that it is a space of constant curvature −1 so, locally it is
isometric to the hyperbolic space.

Example 2.1. We consider the 7-dimensional manifold M =
{
(x1, x2, . . . , x7)

∈ R
7
}
, where x = (x1, x2, . . . , x7) are cartesian coordinates on R

7. We define

with respect to the natural field of frames { ∂
∂xi

}, the differential 1-form η and
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the vector field ξ by

(2.6) η = dx7, ξ =
∂

∂x7
,

the semi-Riemannian metric g of index ν = 2 on M by

(2.7) g = η ⊗ η + e2x7

{
− dx2

1 + dx2
2 + dx2

3 − dx2
4 + dx2

5 + dx2
6

}
.

The vector fields

(2.8)

e1 = e−x7
∂

∂x1
, e2 = e−x7

∂

∂x2
, e3 = e−x7

∂

∂x3
, e4 = e−x7

∂

∂x4
,

e5 = e−x7
∂

∂x5
, e6 = e−x7

∂

∂x6
, e7 =

∂

∂x7
.

In local field of frames {ei}, the metric g is given by g(ei, ej) = 0, ∀i 6= j, i, j =
1, 2, . . . , 7, g(ek, ek) = 1, ∀k = 2, 3, 5, 6, 7 and g(em, em) = −1, ∀m = 1, 4. The
1-form η is given by η(X) = g(X, e7) for any X ∈ Γ(TM). Let φ be the
(1.1)-tensor field defined by

φe1 = e4, φe2 = −e5, φe3 = e6, φe4 = −e1, φe5 = e2, φe6 = −e3, φe7 = 0.

Then using the linearity of φ and g, we have η(e7) = 1, φ
2
X = −X + η(X)e7,

g(φX, φY ) = g(X,Y ) − η(X)η(Y ) for any X,Y ∈ Γ(TM). Thus, for e7 = ξ,

(φ, ξ, η, g) defines an almost contact metric structure on M . Let ∇ be the
Levi-Civita connection with respect to the metric g. Then, we have [ei, e7] =
ei, ∀i = 1, 2, . . . , 6 and [ei, ej] = 0, ∀i 6= j, i, j = 1, 2, . . . , 6. Using the Koszul’s
formula given by

2g(∇XY , Z) = X · g(Y , Z) + Y · g(Z,X)− Z · g(X,Y )− g(X, [Y , Z])

− g(Y , [X,Z]) + g(Z, [X,Y ]),

the non-vanishing covariant derivative are given by ∇e1e1 = e7, ∇e2e2 = −e7,
∇e3e3 = −e7, ∇e4e4 = e7, ∇e5e5 = −e7, ∇e6e6 = −e7, ∇e1e7 = e1, ∇e2e7 = e2,
∇e3e7 = e3, ∇e4e7 = e4, ∇e5e7 = e5, ∇e6e7 = e6. From these relations, it fol-

lows that the manifold M satisfies (∇Xφ)Y = g(φX, Y )ξ−η(Y )φX. Hence, M

is indefinite Kenmotsu manifold. Also, it is easy to check that (M,φ, ξ, η, g) is
an indefinite Kenmotsu manifold of constant φ-holomorphic sectional curvature
c = −1.

Let (M, g) be a (2n + 1)-dimensional semi-Riemannian manifold with con-
stant index ν, 0 < ν < 2n + 1 and let (M, g) be a hypersurface of M , with
g = g

|M . M is said to be a lightlike hypersurface of M if g is of constant rank

2n− 1 and the orthogonal vector bundle TM⊥ to tangent vector bundle TM ,
defined as

(2.9) TM⊥ =
⋃

p∈M

{
Yp ∈ TpM : gp(Xp, Yp) = 0, ∀Xp ∈ TpM

}
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is a distribution of rank 1 on M [9]: TM⊥ ⊂ TM and then coincides with the
radical distribution RadTM = TM∩TM⊥. A complementary bundle of TM⊥

in TM is a rank 2n−1 non-degenerate distribution overM . It is called a screen
distribution and is often denoted by S(TM). A lightlike hypersurface endowed
with a specific screen distribution is denoted by the triple (M, g, S(TM)). As
TM⊥ lies in the tangent bundle, the following result has an important role in
studying the geometry of a lightlike hypersurface.

Theorem 2.2 ([9]). Let (M, g, S(TM)) be a lightlike hypersurface of (M, g).
Then there exists a unique vector bundle tr(TM) of rank 1 over M such that

for any non-zero section E of TM⊥ on a coordinate neighborhood U ⊂ M ,

there exist a unique section N of tr(TM) on U satisfying

(2.10) g(N,E) = 1, g(N,N) = g(N,W ) = 0, ∀W ∈ Γ(S(TM)|U).

Throughout the paper, all manifolds are supposed to be paracompact and
smooth. We denote Γ(F ) the smooth sections of the vector bundle F . Also by
⊥ and ⊕ we denote the orthogonal and nonorthogonal direct sum of two vector
bundles. By Theorem 2.2 we may write down the following decomposition

TM = S(TM) ⊥ TM⊥,(2.11)

TM |M = S(TM) ⊥
{
TM⊥ ⊕ tr(TM)

}
= TM ⊕ tr(TM).(2.12)

Let∇ be the Levi-Civita connection on (M, g), then by using the second decom-
position of (2.12) and considering a normalizing pair {E,N} as in Theorem 2.2,
we have Gauss and Weingarten formulae in the form, for any X,Y ∈ Γ(TM|U),

(2.13) ∇XY = ∇XY + h(X,Y ), and ∇XN = −ANX +∇⊥

XN,

where ∇XY,ANX ∈ Γ(TM). ∇ is an induced a symmetric linear connection
on M , ∇⊥ is a linear connection on the vector bundle tr(TM), h is a symmetric
bilinear form and AN is the shape operator of M .

Equivalently, consider a normalizing pair {E,N} as in Theorem 2.2. Then
(2.13) takes the form, for any X,Y ∈ Γ(TM|U),

(2.14) ∇XY = ∇XY +B(X,Y )N, and ∇XN = −ANX + τ(X)N.

It is important to mention that the second fundamental form B is independent
of the choice of screen distribution, in fact, from (2.14), we obtain X,Y ∈
Γ(TM|U)

(2.15) B(X,Y ) = g(∇XY,E) and τ(X) = g(∇⊥

XN,E).

Let P be the projection morphism of TM on S(TM) with respect to the
orthogonal decomposition (2.11). We have for any X,Y ∈ Γ(TM|U),

(2.16) ∇XPY = ∇∗

XPY + C(X,PY )E and ∇XE = −A∗

EX − τ(X)E,

where∇∗

XPY and A∗

EX belong to Γ(S(TM)). C,
∗

AE and
∗

∇ are called the local
second fundamental form, the local shape operator and the induced connection
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on S(TM). The induced linear connection ∇ is not a metric connection and
we have

(2.17) (∇Xg)(Y, Z) = B(X,Y )θ(Z) +B(X,Z)θ(Y ), ∀X,Y ∈ Γ(TM|U),

where θ is a differential 1-form locally defined on M by θ(X) := g(N,X),
∀X ∈ Γ(TM). The local second fundamental form of M satisfies B(X,PY ) =

g(
∗

AE X,PY ) and B(X,E) = 0 , also B(
∗

AE X,Y ) = B(X,
∗

AE Y ) and g(
∗

AE

X,N) = 0. The local second fundamental form of S(TM) satisfies C(X,PY ) =
g(ANX,PY ).

Denote byR andR the Riemann curvature tensors ofM andM , respectively.
From Gauss equation [9], we have the following, for any X,Y, Z ∈ Γ(TM|U),

R(X,Y )Z = R(X,Y )Z +B(X,Z)ANY −B(Y, Z)ANX + {(∇XB)(Y, Z)

− (∇Y B)(X,Z) + τ(X)B(Y, Z)− τ(Y )B(X,Z)}N,(2.18)

where (∇XB)(Y, Z) = X · B(Y, Z)−B(∇XY, Z)−B(Y,∇XZ).

3. Lightlike hypersurfaces of indefinite Kenmotsu manifolds

Let (M,φ, ξ, η, g) be an indefinite Kenmotsu manifold and (M, g) be its
lightlike hypersurface, tangent to the structure vector field ξ, i.e., ξ ∈ Γ(TM).
If E is a local section of TM⊥, then g(φE,E) = 0, and φE is tangent to

M . Thus φ(TM⊥) is a distribution on M of rank 1 such that φ(TM⊥) ∩
TM⊥ = {0}. This enables us to choose a screen distribution S(TM) such

that it contains φ(TM⊥) as vector subbundle. We consider local section N of
tr(TM). Since g(φN,E) = −g(N,φE) = 0, we deduce that φN is also tangent
to M . On the other hand, since g(φN,N) = 0, we see that the component

of φN with respect to E vanishes. Thus φN ∈ Γ(S(TM)). From the second
equation of (2.2) we have g(φN, φE) = 1. Therefore, φ(TM⊥) ⊕ φ(tr(TM))
(direct sum but not orthogonal) is a non-degenerate vector subbundle of S(TM)
of rank two.

It is known [4] that if M is tangent to the structure vector field ξ, then ξ

belongs to S(TM). using this and since g(φE, ξ) = g(φN, ξ) = 0, there exists
a non-degenerate distribution D0 of rank 2n− 4 on M such that

(3.1) S(TM) =
{
φ(TM⊥)⊕ φ(tr(TM))

}
⊥ D0 ⊥ 〈ξ〉,

where 〈ξ〉 = Span{ξ}. It is easy to check that the distribution D0 is invariant

under φ, i.e., φ(D0) = D0.

Example 3.1. Let M be a hypersurface of (M = R
7, φ, ξ, η, g) (indefinite

Kenmotsu space form defined in Example 1) given by

(3.2) M =
{
(x1, . . . , x7) ∈ R

7 : x5 − x4 = 0
}
,

where (x1, . . . , x7) is a local coordinate system on R
7. Thus the tangent space

TM is spanned by {Ui}16i66, where U1 = e1, U2 = e2, U3 = e3, U4 = e4 + e5,
U5 = e6, U6 = e7 and the distribution TM⊥ of rank 1 is spanned by E = e4+e5.



1266 O. LUNGIAMBUDILA, F. MASSAMBA, AND J. TOSSA

It follows that TM⊥ ⊂ TM . Then M is a 6-dimensional lightlike hypersurface
of R7. Also, the transversal bundle tr(TM) is spanned by N = 1

2 (e5 − e4). On

the other hand, by using the almost contact structure (φ, ξ, η) of R7 and also by
taking into account of the decomposition of screen distribution S(TM) given
in (3.1), the distribution D0 is spanned by {F, φF}, where F = U3, φF = U5,

and the distributions 〈ξ〉, φ(TM⊥) and φ(tr(TM)) are spanned, respectively
by ξ = U6, φE = U2 − U1 and φN = 1

2 (U1 + U2). Hence M is a lightlike

hypersurface of an indefinite Kenmotsu space form (R7, φ, ξ, η, g).

Moreover, from (2.11), (2.12) and (3.1) we obtain the decomposition

(3.3) TM =
{
φ(TM⊥)⊕ φ(tr(TM))

}
⊥ D0 ⊥ 〈ξ〉 ⊥ TM⊥,

(3.4) TM |M =
{
φ(TM⊥)⊕ φ(tr(TM))

}
⊥ D0 ⊥ 〈ξ〉 ⊥ (TM⊥ ⊕ tr(TM)).

Now, we consider the distributions on M ,

(3.5) D := TM⊥ ⊥ φ(TM⊥) ⊥ D0, and D′ := φ(tr(TM)).

Then D is invariant under φ, i.e., φ(D) = D So we have the decomposition

(3.6) TM = (D ⊕D′) ⊥ 〈ξ〉.

Let us consider the local null vector fields U := −φN , V := −φE. Then, from
(3.6), any X ∈ Γ(TM) is written as

(3.7) X = RX +QX + η(X)ξ, QX = u(X)U,

where R and Q are the projection morphisms of TM into D and D′, respec-
tively, and u is a differential 1-form locally defined on M by u(X) = g(X,V ).

Applying φ to (3.7) and (2.1), note that φ
2
N = −N , we obtain

(3.8) φX = φX + u(X)N,

where φ is a tensor field of type (1, 1) defined on M by φX := φRX , for any
X ∈ Γ(TM). In addition, we obtain, for any X ∈ Γ(TM),

B(X, ξ) = 0,(3.9)

φ2X = −X + η(X)ξ + u(X)U, and(3.10)

∇Xξ = X − η(X)ξ.(3.11)

By using (2.2) and (3.8) we derive that, for any X,Y ∈ Γ(TM),

(3.12) g(φX, φY ) = g(X,Y )− η(X)η(Y )− u(Y )v(X)− u(X)v(Y ),

where v is a 1-form locally defined on M by v(X) = g(X,U), for any X ∈
Γ(TM). we note that

(3.13) g(φX, Y ) + g(X,φY ) = −u(X)θ(Y )− u(Y )θ(X).

For future use, we have the following identities: for any X,Y ∈ Γ(TM),

C(X, ξ) = θ(X),(3.14)

B(X,U) = C(X,V ),(3.15)
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(∇Xu)Y = −B(X,φY )− u(Y )τ(X)− η(Y )u(X),(3.16)

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX −B(X,Y )U + u(Y )ANX.(3.17)

4. Locally symmetric lightlike hypersurfaces in indefinite

Kenmotsu manifolds

Let M be a lightlike hypersurfaces in indefinite Kenmotsu manifold M
c
with

ξ ∈ Γ(TM). Let us consider the pair {E,N} on U ⊂ M (Theorem 2.2). By
using (2.3), (2.18) and (3.8), and comparing the tangential and transversal
parts of the both sides, we have, for any X,Y, Z ∈ Γ(TM),

R(X,Y )Z =
c− 3

4
{g(Y, Z)X − g(X,Z)Y }+

c+ 1

4
{η(X)η(Z)Y

− η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ + g(φY, Z)φX

− g(φX,Z)φY −2g(φX, Y )φZ}+B(Y, Z)ANX −B(X,Z)ANY(4.1)

and

(∇XB)(Y, Z)− (∇Y B)(X,Z) = τ(Y )B(X,Z)− τ(X)B(Y, Z)

+
c+ 1

4
{g(φY, Z)u(X)

− g(φX,Z)u(Y )− 2g(φX, Y )u(Z)}.(4.2)

A lightlike hypersurface (M, g, S(TM)) of a semi Riemannian manifold (M, g)
is said locally symmetric [10], if and only if for any X,Y, Z, T,W ∈ Γ(TM) and
N ∈ Γ(tr(TM)) the following hold

(4.3) g((∇WR)(X,Y )Z, PT ) = 0 and g((∇WR)(X,Y )Z,N) = 0.

That is (∇WR)(X,Y )Z = 0. Using Lemma 3.2 of [10], for any W,X, Y, Z ∈
Γ(TM), T ∈ Γ(S(TM)) and N ∈ Γ(tr(TM)), we have

g((∇WR)(X,Y )Z, T ) = g((∇WR)(X,Y )Z, T ) + (∇WB)(X,Z)C(Y, T )

+B(X,Z)g((∇WAN )Y, T )− (∇WB)(Y, Z)C(X,T )

−B(Y, Z)g((∇WAN )X,T )−B(Y, Z)τ(X)C(W,T )

+ (∇Y B)(X,Z)C(W,T )− (∇XB)(Y, Z)C(W,T )

+B(X,Z)τ(Y )C(W,T )−B(W,X)R(N, Y, Z, T )

−B(W,Y )R(X,N,Z, T )−B(W,Z)R(X,Y,N, T ),(4.4)

and,

g((∇WR)(X,Y )Z,N) = g((∇WR)(X,Y )Z,N) +B(X,Z)g(∇W (ANY ), N)

− B(Y, Z)g(∇W (ANX), N)−B(W,X)R(N, Y, Z,N)

− B(W,Y )R(X,N,Z,N).(4.5)
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Suppose that M is a lightlike hypersurface in indefinite Kenmotsu manifold
(M

c
, c = 3) with ξ ∈ TM . Then the relation (4.1) becomes

R(X,Y )Z = η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

− g(Y, Z)η(X)ξ + g(φY, Z)φX − g(φX,Z)φY

− 2g(φX, Y )φZ +B(Y, Z)ANX −B(X,Z)ANY.(4.6)

From decomposition (2.11), the curvature tensor R is written as

R(X,Y )Z = R(PX,PY )PZ + θ(X)R(E,PY )PZ

+ θ(Y )R(PX,E)PZ + θ(Z)R(PX,PY )E

+ θ(X)θ(Z)R(E,PY )E + θ(Y )θ(Z)R(PX,E)E,(4.7)

where, in particular and using (4.6), the component R(E, ·)E is given by

(4.8) R(E,PY )E = −3u(PY )V.

By using (4.6), the covariant derivative of R is given by, for any W ∈ Γ(TM),

(∇WR)(E,PY )E = ∇WR(E,PY )E −R(∇WE,PY )E −R(E,∇WPY )E

−R(E,PY )∇WE

= − 3W · u(PY )V + 3u(PY )u(W )ξ + 3u(PY )φ∇WE

− u(PY )φ∇WE + u(∇WE)φPY − 2g(φ∇WE,PY )V

+ 3u(∇WPY )V + η(PY )η(∇WE)E + g(φPY,∇WE)V

− u(∇WE)φPY − 2u(PY )φ∇WE −B(PY,∇WE)ANE,(4.9)

which implies

(4.10) g((∇WR)(E,PY )E,N) = −η(PY )u(W ).

Taking PY = ξ and W = U in (4.10), we obtain g((∇UR)(E, ξ)E,N) =
−1. This means that a lighlike hypersurface of indefinite Kenmotsu manifold
(M

c
, c = 3) with ξ ∈ TM cannot be locally symmetric.

Lemma 4.1. There are no lightlike hypersurfaces of indefinite Kenmotsu man-

ifold (M
c
, c = 3) tangent to the structure vector field ξ, which are locally sym-

metric.

Lemma 4.2. Let (M
c
, φ, ξ, η, g) be an indefinite Kenmotsu manifold and R

the Riemann curvature tensor of Levi-Civita connection ∇. Then we have, for

any W,X, Y, Z ∈ Γ(TM),

(∇WR)(X,Y )Z

=
c+ 1

4
{g(φW, φX)η(Z)Y + g(φW, φZ)η(X)Y − g(φW, φY )η(Z)X

− g(φW, φZ)η(Y )X + g(X,Z)g(φW, φY )ξ + g(X,Z)η(Y )W

− g(X,Z)η(Y )η(W )ξ − g(Y, Z)g(φW, φX)ξ − g(Y, Z)η(X)W
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+ g(Y, Z)η(X)η(W )ξ + g(φW, Y )η(Z)φX − g(φW,Z)η(Y )φX

+ g(φY, Z)g(φW,X)ξ − g(φY, Z)η(X)φW − g(φW,X)η(Z)φY

+ g(φW,Z)η(X)φY − g(φX,Z)g(φW, Y )ξ + g(φX,Z)η(Y )φW

− 2g(φW,X)η(Y )φZ + 2g(φW, Y )η(X)φZ − 2g(φX, Y )g(φW,Z)ξ

+ 2g(φX, Y )η(Z)φW}.(4.11)

Proof. By using the relation (2.3), let decompose the Riemann curvature R on
M(c) by

(4.12) R = R1 +R2,

where for any X,Y, Z ∈ Γ(TM),

(4.13) R1(X,Y )Z =
c− 3

4
{g(Y, Z)X − g(X,Z)Y },

R2(X,Y )Z =
c+ 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

− g(Y, Z)η(X)ξ + g(φY, Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ}.(4.14)

By covariant derivation of R, we have, (∇WR)(X,Y )Z = (∇WR2)(X,Y )Z =
∇W (R2(X,Y )Z)−R2(∇WX,Y )Z−R2(X,∇WY )Z−R2(X,Y )∇WZ. By direct
calculation, using (4.14) and the definition of covariant derivative of differential
forms, we obtain the result. �

Theorem 4.3. There are no locally symmetric lightlike hypersurfaces of in-

definite Kenmotsu manifold (M
c
, c 6= −1), tangent to the structure vector field

ξ.

Proof. Let M be a locally symmetric lightlike hypersurface of an indefinite
Kenmotsu manifold M

c
. Suppose c 6= −1. From (4.11), we have, for any

W,X, Y, Z ∈ Γ(TM)

g((∇WR)(X,Y )Z,U)

=
c+ 1

4
{g(φW, φX)η(Z)v(Y ) + g(φW, φZ)η(X)v(Y )

− g(φW, φY )η(Z)v(X)− g(φW, φZ)η(Y )v(X) + g(X,Z)η(Y )v(W )

− g(Y, Z)η(X)v(W )− g(φW, Y )η(Z)θ(X) + g(φW,Z)η(Y )θ(X)

+ g(φY, Z)η(X)θ(W ) + g(φW,X)η(Z)θ(Y )− g(φW,Z)η(X)θ(Y )

− g(φX,Z)η(Y )θ(W ) + 2g(φW,X)η(Y )θ(Z)− 2g(φW, Y )η(X)θ(Z)

− 2g(φX, Y )η(Z)θ(W )}.(4.15)



1270 O. LUNGIAMBUDILA, F. MASSAMBA, AND J. TOSSA

From relation (2.3), we have R(E, Y,E, U) = − 3
4 (c+1)u(Y ). By takingX = E,

Z = E and T = U in (4.4) and (4.15), we obtain for any W,Y ∈ Γ(TM)

(4.16) −(∇WB)(Y,E)C(Y, U) +
3

4
(c+1)B(W,Y )u(Y ) =

3

4
(c+1)η(Y )u(W ).

Then, by taking Y = ξ and W = U in (4.16), we have c = −1 which is a
contradiction. Hence, the claim hold. �

Lemma 4.4. Let M be a lightlike hypersurface of an indefinite Kenmotsu

manifold M
c
. If M is locally symmetric, then it is totally geodesic.

Proof. Let M be a locally symmetric lightlike hypersurface of an indefinite
Kenmotsu space form M

c
, with ξ ∈ Γ(TM). From relation (4.11), we have, for

any W,X, Y, Z ∈ Γ(TM),

g((∇WR)(X,Y )Z,N)

=
c+ 1

4
{g(φW, φX)η(Z)θ(Y ) + g(φW, φZ)η(X)θ(Y )

− g(φW, φY )η(Z)θ(X)− g(φW, φZ)η(Y )θ(X) + g(X,Z)η(Y )θ(W )

− g(Y, Z)η(X)θ(W ) + g(φW, Y )η(Z)v(X)− g(φW,Z)η(Y )v(X)

− g(φY, Z)η(X)v(W )− g(φW,X)η(Z)v(Y ) + g(φW,Z)η(X)v(Y )

+ g(φX,Z)η(Y )v(W ) − 2g(φW,X)η(Y )v(Z) + 2g(φW, Y )η(X)v(Z)

+ 2g(φX, Y )η(Z)v(W )}.(4.17)

From relation (2.3), we have R(E,N,E,N) = c−3
4 . By taking X = E, Z = E

in (4.5) and (4.17), we obtain for any W,Y ∈ Γ(TM)

(4.18) −
c− 3

4
B(W,Y ) = g((∇WR)(E, Y )E,N) = 0.

In virtue of lemma 4.1, c 6= 3, so, the relation (4.18) lead to B(W,Y ) =
0, ∀W,Y ∈ Γ(TM), that is M is totally geodesic. �

It is known, that in locally symmetric semi-Riemannian manifold M , the
locally symmetric lightlike hypersurfaces are totally geodesic lightlike hyper-
surfaces if the vector field ANE is non-null (see [10]). Also in [14], the authors
have proved that in indefinite Sasakian space form, the locally symmetric light-
like hypersurfaces tangent to the vector structure are totally geodesic. So, in
indefinite Kenmotsu space form M(c) we have the following.

Theorem 4.5. Let M be a lightlike hypersurface of indefinite Kenmotsu space

form M(c), tangent to the structure vector field ξ. Then M is locally symmetric

if and only if it is totally geodesic.

Proof. Let M be a totally geodesic lightlike hypersurface of indefinite Ken-
motsu space form (M(c). Since c = −1, by using (4.4), (4.5) and (4.11), we
obtain g((∇WR)(X,Y )Z, PT ) = 0 and g((∇WR)(X,Y )Z,N) = 0, that is M

is locally symmetric. The converse is given by Lemma 4.4. �
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Example 4.6. Let M be a hypersurface of an indefinite Kenmotsu space form
(M = R

7, φ, ξ, η, g) of Example 2, given by

M =
{
(x1, . . . , x7) ∈ R

7 : x5 − x4 = 0
}
,

where (x1, . . . , x7) is a local coordinate system on R
7. As explained in Example

2, M is a lightlike hypersurface of M having a local quasi-orthonormal field of
frames

{
U1 = e1, U2 = e2, U3 = e3, U4 = E = e4 + e5, U5 = e6, U6 = ξ =

e7, N = 1
2 (e5 − e4)

}
along M . Denote by ∇ the Levi-Civita connection on M .

Then, using non-vanishing components of ∇ given in Example 1, we obtain

∇EN = −ξ and ∇XN = 0, ∀X ∈ Γ(S(TM)).

Thus, the differential 1-form τ vanish, that is τ(X) = 0, ∀X ∈ Γ(TM). So,
from the Gauss and Weingarten formulae we have

ANE = −ξ, ANX = 0, ∀X ∈ Γ(S(TM)),(4.19)
∗

AE X = 0, ∇XE = 0, ∀X ∈ Γ(TM).(4.20)

From (4.20), we infer that, the lightlike hypersurfaceM ofM(c = −1) is totally
geodesic. Let consider the induced Riemannian curvature R on M given by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z, ∀X,Y, Z ∈ Γ(TM).

By straightforward calculation, the non-vanishing local components of R are
given by

R(U1, Ui)U1 = −Ui, i = 2, . . . , 6; R(U1, Ui)Ui = −U1, i = 2, 3, 5, 6;
R(U2, Ui)U2 = Ui, i = 3, . . . , 6; R(U2, Ui)Ui = −U2, i = 3, 5, 6;
R(U3, Ui)U3 = Ui, i = 4, 5, 6; R(U3, Ui)Ui = −U3, i = 5, 6;
R(U4, Ui)Ui = −U4, i = 5, 6;
R(U5, U6)U5 = U6; R(U5, U6)U6 = −U5.(4.21)

By direct calculation, using relations (4.21) above, we obtain

(∇Ui
R)(Uj , Uk)Ul = 0, i, j, k, l = 1, . . . , 6.

Therefore, the lightlike hypersurface M of M(c = −1) is locally symmetric.

A submanifold M is said to be a totally umbilical lightlike hypersurface of
a semi-Riemannian manifold M if the local second fundamental form B of M
satisfies

(4.22) B(X,Y ) = ρg(X,Y ), ∀X,Y ∈ Γ(TM),

where ρ is the smooth function on U ⊂ M .
If we assume that M is a totally umbilical lightlike hypersurface of a semi-

Riemannian manifold M , then we have B(X,Y ) = ρg(X,Y ) for any X,Y ∈
Γ(TM), which implies, by using (3.9), that 0 = B(ξ, ξ) = ρ. Hence M is totally
geodesic.

It follows that an indefinite Kenmotsu manifold M does not admit any
non-totally geodesic, totally umbilical lightlike hypersurface. From this point



1272 O. LUNGIAMBUDILA, F. MASSAMBA, AND J. TOSSA

of view, Bejancu [2] considered the concept of totally contact umbilical semi-
invariant submanifolds. The notion of totally contact umbilical submanifolds
was first defined by Kon [13].

A submanifold M is said to be totally contact umbilical if its second funda-
mental form h of M satisfies [2]

(4.23) h(X,Y ) = {g(X,Y )− η(X)η(Y )}H + η(X)h(Y, ξ) + η(Y )h(X, ξ),

for anyX,Y ∈ Γ(TM), whereH is a normal vector field onM (that isH = λN ,
λ is a smooth function on U ⊂ M ). The totally contact umbilical condition
(4.23) can be rewritten as,

h(X,Y ) = B(X,Y )N = {B1(X,Y ) +B2(X,Y )}N,

where B1(X,Y ) = λ{g(X,Y ) − η(X)η(Y )} and B2(X,Y ) = η(X)B(Y, ξ) +
η(Y )B(X, ξ).

If the λ = 0 (that is B1 = 0), then the lightlike hypersurface M is said to
be totally contact geodesic and if B2 = 0, M is said to be η-totally umbilical.
It is easy to check that a totally contact umbilical lightlike hypersurface of an
indefinite Kenmotsu manifold is η-totally umbilical. So, as was proved in [15],
There exist no totally contact umbilical lightlike hypersurfaces of an indefinite
Kenmotsu manifold (M

c
, c 6= −1), tangent to the structure vector field ξ.

If M is totally contact umbilical of an indefinite Kenmotsu manifold M
c
,

then, by Corollary 3.7 in [15], c = −1 and from (4.1), the induced curvature
tensor R on M is given by, for any X,Y, Z ∈ Γ(TM),

(4.24) R(X,Y )Z = g(X,Z)Y − g(Y, Z)X +B(Y, Z)ANX −B(X,Z)ANY.

The covariant derivative of R is given by

(∇WR)(X,Y )Z

= (∇W g)(X,Z)Y −(∇W g)(Y, Z)X−(∇WB)(X,Z)ANY

+(∇WB)(Y, Z)ANX−B(X,Z)(∇WAN )Y +B(Y, Z)(∇WAN )X

= {B(W,X)θ(Z)+B(W,Z)θ(X)}Y−{B(W,Y )θ(Z)+B(W,Z)θ(Y )}X

−(∇WB)(X,Z)ANY +(∇WB)(Y, Z)ANX−B(X,Z)(∇WAN )Y

+B(Y, Z)(∇WAN )X.(4.25)

Taking X = Z = E, W = U and Y = V into (4.25) and using (4.23), we have

(4.26) g((∇UR)(E, V )E,N) = −λ.

Thus, we have the following results.

Theorem 4.7. There are no non-totally geodesic lightlike hypersurfaces of in-

definite Kenmotsu manifolds M
c
, with ξ∈TM and (∇UR)(E, V )E∈Γ(S(TM))

which is totally contact umbilical.

Theorem 4.8. Let M be a lightlike hypersurface of an indefinite Kenmotsu

manifold M
c
with ξ ∈ TM . If M is totally contact umbilical, then M is locally

symmetric if and only if it is totally geodesic.
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Let M be a submanifold of a semi-Riemannian manifold M . The second
fundamental form h = B ⊗N of M is said to be parallel if

(4.27) (∇Xh)(Y, Z) = {(∇XB)(Y, Z) + τ(X)B(Y, Z)}N = 0.

A submanifold of a semi-Riemannian manifold with parallel fundamental form
h is called a parallel submanifold. So, as was proved in [15], there are no parallel

lightlike hypersurfaces of indefinite Kenmotsu manifold (M
c
, c 6= −1), tangent

to the structure vector field ξ. Also, in virtue of Theorem 3.3 in [15], M is
totally geodesic. Thus using (4.27), we have:

Lemma 4.9. Let M be a lightlike hypersurface of an indefinite Kenmotsu space

form M(c), with ξ ∈ TM . Then M is parallel if and only if it is totally geodesic.

In virtue of Theorem 4.5 and Lemma 4.9, we have the following result.

Theorem 4.10. Let M be a lightlike hypersurface of an indefinite Kenmotsu

space form M(c), with ξ ∈ Γ(TM). Then M is locally symmetric if and only

if it is parallel.

5. Semi-symmetric lightlike hypersurfaces in

indefinite Kenmotsu manifold

Definition 5.1. Let M be a lightlike hypersurface of a semi-Riemannian man-
ifold M . We say that M is semi-symmetric [19], if the following condition is
satisfied,

(5.1) (R(W1,W2) · R)(X,Y, Z, T ) = 0 ∀W1,W2, X, Y, Z, T ∈ Γ(TM),

where R is the induced Riemann curvature on M .

This is equivalent to

−R(R(W1,W2)X,Y, Z, T )− · · · −R(X,Y, Z,R(W1,W2)T ) = 0.

In general the condition (5.1) is not equivalent to (R(W1,W2) ·R)(X,Y )Z = 0
as in the non-degenerate setting. Indeed, by direct calculation we have for any
W1,W2, X, Y, Z, T ∈ Γ(TM)

(R(W1,W2) · R)(X,Y, Z, T ) = g((R(W1,W2) ·R)(X,Y )Z, T )

+ (R(W1,W2) · g)(R(X,Y )Z, T ).(5.2)

In the sequel, we need the following proposition

Proposition 5.2. Let M be a lightlike hypersurface of a semi-Riemannian

manifold M . Then for any W1,W2, Y, T ∈ Γ(TM) and E ∈ Γ(TM⊥), we have

(R(W1,W2) · R)(E, Y,E, T )

= (R(W1,W2).R)(E, Y,E, T )−B(W1, Y )R(E,ANW2, E, PT )

+B(W2, Y )R(E,ANW1, E, PT ) +B(Y,R(W1,W2)E)g(ANE,PT )

−B(W1, PT )R(E, Y,E,ANW2) +B(W2, PT )R(E, Y,E,ANW1)
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− {(∇W1
B)(W2, PT )− (∇W2

B)(W1, PT ) + τ(W1)B(W2, PT )

− τ(W2)B(W1, PT )}R(E, Y,E,N)− {(∇W1
B)(W2, Y )

− (∇W2
B)(W1, Y ) + τ(W1)B(W2, Y )

− τ(W2)B(W1, Y )}R(E,N,E, T )− θ(T ){(∇EB)(Y,R(W1,W2)E)

− (∇Y B)(E,R(W1,W2)E) + τ(E)B(Y,R(W1,W2)E)}.(5.3)

Proof. The proof follows from direct calculation by using T = PT + θ(T )E,
(∇XB)(Y,E) = (∇Y B)(X,E) and definition of R · R. �

Next we investigate the effect of semi-symmetry condition on geometry of
lightlike hypersurfaces in indefinite Kenmotsu manifold M

c
.

A submanifold M of a semi-Riemannian manifold M is said to be (φ(TM⊥),
D⊕D′)-mixed totally geodesic if its second fundamental form h satisfies h(X,Y )

= 0 (equivalently B(X,Y ) = 0) for any X ∈ Γ(φ(TM⊥)) and Y ∈ Γ(D ⊕D′).

Theorem 5.3. Let M be a semi-symmetric lightlike hypersurface of indefinite

Kenmotsu manifold M
c
, with ξ ∈ Γ(TM). Then at least one of the following

holds:

(i) c = −1.
(ii) ANE = 0.
(iii) M is (φ(TM⊥), D ⊕D′)-mixed totally geodesic.

Proof. Let M be a semi-symmetric lightlike hypersurface of an indefinite Ken-
motsu manifold M

c
, with ξ ∈ Γ(TM). From (2.3) we have R(E,N,E,X) = 0

and R(E,X,E,N) = 0, ∀X ∈ Γ(TM). By using relation (5.3) we obtain, for
any W1,W2, Y, T ∈ Γ(TM),

(R(W1,W2) · R)(E, Y,E, T )

= −B(W1, Y )R(E,AW2, E, PT )

+B(W2, Y )R(E,AW1, E, PT ) +B(Y,R(W1,W2)E)g(AE,PT )

−B(W1, PT )R(E, Y,E,AW2) +B(W2, PT )R(E, Y,E,AW1)

− θ(T ){(∇EB)(Y,R(W1,W2)E)− (∇Y B)(E,R(W1,W2)E)

+ τ(E)B(Y,R(W1,W2)E)− τ(Y )B(E,R(W1,W2)E)}.(5.4)

By direct calculation, using (2.3), the left hand side is given by

(R(W1,W2) · R)(E, Y,E, T )

= −
3(c+ 1)

4

{
g(W1, Y )u(W2)u(T )− g(W2, Y )u(W1)u(T )

+ g(W1, T )u(Y )u(W2)− g(W2, T )u(Y )u(W1)
}
.(5.5)

From (4.1) we have R(E,X)E = 3(c+1)
4 u(X)φE. By taking W1 = E and

W2 = U , into (5.4) and (5.5), we obtain, for any Y, T ∈ Γ(TM)

−
3

4
(c+ 1)B(Y, V )g(ANE,PT ) = 0.(5.6)



EQUIVALENCE CONDITIONS OF SYMMETRY PROPERTIES 1275

This equation completes the proof. �

Let M be a lightlike hypersurface of an indefinite Kenmotsu manifold M
c

having constant φ-holomorphic sectional curvature c. Let Consider a local
quasi-orthonormal frame {E, φE, φN, ξ, Fi, N}16i62n−4 on M

c
, where {E, φE,

φN, ξ, Fi} is a local frame field on M with respect to the decomposition (3.3).
By definition Ric(X,Y ) = trace(Z −→ R(Z,X)Y ), we have, for any X,Y ∈
Γ(TM),

Ric(X,Y ) =

2n−4∑

i=1

εig(R(Fi, X)Y, Fi) + g(R(φE,X)Y, φN)

+ g(R(φN,X)Y, φE) + g(R(ξ,X)Y, ξ) + g(R(E,X)Y,N),(5.7)

where, εi is the causal character of the vector field Fi, of the orthonormal frame
field {Fi}16i62n−4 of non-degenerate distribution D0. From relation (2.3) and
Gauss-Codazzi equations, we obtain

g(R(Fi, X)Y, Fi) =
c− 3

4
{εig(X,Y )− g(X, g(Y, Fi)Fi)}

+
c+ 1

4
{−εiη(X)η(Y ) + g(φY, g(φX,Fi)Fi)

+ 2g(φX, g(φY, Fi)Fi)} +B(X,Y )C(Fi, Fi)

−B(Fi, Y )C(X,Fi),(5.8)

g(R(φE,X)Y, φN) =
c− 3

4
{g(X,Y )− g(X, g(Y, φE)φN)}

−
c+ 1

4
η(X)η(Y ) +B(X,Y )C(φE, φN)

−B(φE, Y )C(X,φN),(5.9)

g(R(φN,X)Y, φE) =
c− 3

4
{g(X,Y )− g(X, g(Y, φN)φE)}

−
c+ 1

4
η(X)η(Y ) +B(X,Y )C(φN, φE)

−B(φN, Y )C(X,φE),(5.10)

g(R(ξ,X)Y, ξ) =
c− 3

4
{g(X,Y )− g(X, η(Y )ξ)}

+
c+ 1

4
{−g(X,Y ) + η(X)η(Y )}

+B(X,Y )C(ξ, ξ) −B(ξ, Y )C(X, ξ),(5.11)

g(R(E,X)Y,N) =
c− 3

4
g(X,Y ) +

c+ 1

4
{−η(X)η(Y )

+ g(φY, θ(φX)E) + 2g(φX, θ(φY )E)}.(5.12)

So substituting (5.8), (5.9), (5.10), (5.11), and (5.12) in (5.7) and regrouping
like terms, we have the following result.
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Lemma 5.4. Let M be a lightlike hypersurface of indefinite Kenmotsu manifold

M
c
, with ξ ∈ Γ(TM). Then the Ricci tensor Ric on M is given by, for any

X,Y ∈ Γ(TM),

(5.13) Ric(X,Y ) = ag(X,Y )− bη(X)η(Y ) +B(X,Y )trAN −B(ANX,Y ),

where a = (2n+1)(c−3)+8
4 , and b = (2n+1)(c+1)

4 and trAN is written with respect

to g restricted to S(TM).

Theorem 5.5. Let M be a semi-symmetric lightlike hypersurface of an indef-

inite Kenmotsu space form M(c), with ξ ∈ Γ(TM). Then either M is totally

geodesic or Ric(E,X) = 0, for any X ∈ Γ(S(TM)) − 〈ξ〉, where Ric is the

Ricci tensor of M .

Proof. Suppose that M is a lightlike hypersurface of an indefinite Kenmotsu
space form M(c). Since c = −1, from (4.24), the induced Riemann curva-
ture tensor R satisfies R(X,Y )Z = g(X,Z)Y − g(Y, Z)X + B(Y, Z)ANX −
B(X,Z)ANY . By direct calculation, we obtain, for any X,Y, Z, T ∈ Γ(TM)

(R(E,X) · R)(E, Y, Z, T ) = −B(X,Y )B(ANE,Z)g(ANE, T )

−B(Y,ANE)B(X,Z)g(ANE, T )

−B(Y, Z)B(X,T )g(ANE,ANE).(5.14)

If M is semi-symmetric, the left hand of (5.14) vanishes and by taking T = ξ,
we obtain

B(X,Y )B(ANE,Z) +B(Y,ANE)B(X,Z) = 0.(5.15)

Since B(ANE,X) = −Ric(E,X) for any X ∈ Γ(TM), by taking Y = Z in
(5.15) we obtain −B(X,Y )Ric(E, Y ) = 0, which leads B(X,Y ) = 0 for any
X,Y ∈ Γ(TM) or Ric(E, Y ) = 0 for any Y ∈ Γ(S(TM))− 〈ξ〉. This complete
the proof. �

Theorem 5.6. Let M be a lightlike hypersurface of an indefinite Kenmotsu

space form M(c), with ξ ∈ Γ(TM) and Ric(E, ζ) 6= 0 for some ζ ∈ Γ(S(TM))−
〈ξ〉. Then, M is semi-symmetric if and only if it is totally geodesic.

Since Ric(E,X) = −B(ANE,X), from Theorem 5.6, the following hold.

Corollary 5.7. Let M be a lightlike hypersurface of an indefinite Kenmotsu

space form M(c), with ξ ∈ Γ(TM) and Ric(E, ζ) 6= 0 for some ζ ∈ Γ(S(TM))−
〈ξ〉, then M is not semi-symmetric.

In virtue of Theorem 4.5 and Theorem 5.6, we have the following result.

Theorem 5.8. Let M be a lightlike hypersurface of an indefinite Kenmotsu

space form M(c), with ξ ∈ Γ(TM) and Ric(E, ζ) 6= 0 for some ζ ∈ Γ(S(TM))−
〈ξ〉. Then, M is locally symmetric if and only if it is semi-symmetric.
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A submanifold M of a semi-Riemannian manifold M is said to be semi-
parallel [8] if its second fundamental form h satisfies, for any W1,W2, X, Y ∈
Γ(TM),

(5.16) (R(W1,W2) · h)(X,Y )=−h(R(W1,W2)X,Y )−h(X,R(W1,W2)Y )=0.

Proposition 5.9. Let M be a lightlike hypersurface of an indefinite Kenmotsu

space form M(c), with ξ ∈ Γ(TM) and Ric(E, ζ) 6= 0 for some ζ ∈ Γ(S(TM))−
〈ξ〉. Then, M is semi-parallel if and only if it is totally geodesic.

Proof. Let consider M a lightlike hypersurface of an indefinite Kenmotsu space
form M(c). Since c = −1, the curvature tensor R satisfies (4.24) and we have
for any W1,W2, X, Y ∈ Γ(TM)

(R(W1,W2) · h)(X,Y ) =
{
g(W2, X)B(W1, Y )− g(W1, X)B(W2, Y )

−B(W2, X)B(ANW1, Y ) +B(W1, X)B(ANW2, Y )

+ g(W2, Y )B(W1, X)− g(W1, Y )B(W2, X)

−B(W2, Y )B(ANW1, X)

+B(W1, Y )B(ANW2, X)
}
N.(5.17)

Then, by taking W2 = E and X = Y into (5.17), we obtain

(5.18) (R(W1, E) · h)(X,X) = 2B(W1, X)B(ANE,X), ∀W1, X ∈ Γ(TM).

If M is semi-parallel, since B(ANE, ζ) = −Ric(E, ζ) 6= 0 for ζ ∈ Γ(S(TM))
and ζ 6= ξ, by (5.18), we infer that B(W1, X) = 0, ∀W1, X ∈ Γ(TM). The
converse is obtain by using (5.17). �

In virtue of Theorem 5.6 and Proposition 5.9, we have the following result.

Theorem 5.10. Let M be a lightlike hypersurface of an indefinite Kenmotsu

space form M(c), with ξ ∈ Γ(TM) and Ric(E, ζ) 6= 0 for some ζ ∈ Γ(S(TM))−
〈ξ〉. Then, M is semi-symmetric if and only if it is semi-parallel.

6. Ricci semi-symmetric lightlike hypersurfaces in indefinite

Kenmotsu manifold

In this section, we study Ricci semi-symmetric lightlike hypersurfaces of
indefinite Kenmotsu manifolds which have constant φ-holomorphic sectional
curvature, tangent to the structure vector field ξ. We prove that Ricci semi-
symmetric lightlike hypersurfaces are totally geodesic under some condition.

A lightlike submanifold M of a semi-Riemannian manifold M is said to be
Ricci semi-symmetric if the following condition is satisfied [5]

(6.1) (R(W1,W2) · Ric)(X,Y ) = 0, ∀ W1,W2, X, Y ∈ Γ(TM).

Where R and Ric are induced Riemannian curvature and Ricci tensor on M ,
respectively. This latter condition is equivalent to

−Ric((R(W1,W2)X,Y )−Ric(X, (R(W1,W2)Y ) = 0.
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In the following theorem we give result which shows the effect of Ricci semi-
symmetry condition on the geometry of lightlike hypersurfaces of an indefinite
Kenmotsu manifold M

c
.

Theorem 6.1. Let M be a Ricci semi-symmetric lightlike hypersurface of an

indefinite Kenmotsu manifold M
c
, with ξ ∈ Γ(TM). Then either c = −1 or

Ric(E, φE) = 0. Moreover, if c = −1, then either M is totally geodesic or

Ric(E,ANE) = 0.

Proof. Let M be a lightlike hypersurface of an indefinite Kenmotsu manifold
M

c
, with ξ ∈ Γ(TM). By using relation (5.13), we have, for anyX,Y ∈ Γ(TM)

(R(E,X) ·Ric)(E, Y ) =
c+ 1

4

{
3au(X)u(Y ) + 3u(X)B(V, Y )trAN

− 3u(X)B(ANV, Y ) + u(Y )B(φX,ANE)

− g(φX, Y )B(V,ANE) + 2u(X)B(φY,ANE)
}

+B(X,Y )B(ANE,ANE),(6.2)

where a = (2n+1)(c−3)+8
4 . If M is Ricci semi-symmetric, then, by taking Y = E

into (6.2), we obtain

3

4
(c+ 1)u(X)B(φE,ANE) = 0

which implies, for X = φN , 3
4 (c − 1)Ric(E, φE) = 0, since B(φE,ANE) =

−Ric(E, φE). On the other hand, suppose that c = −1. Using relation (6.2)
and since B(ANE,ANE) = −Ric(E,ANE), we have, for any X,Y ∈ Γ(TM),
B(X,Y )Ric(E,ANE) = 0 which completes the proof. �

Theorem 6.2. Let M be a lightlike hypersurface of an indefinite Kenmotsu

space form M(c), with ξ ∈ Γ(TM) and Ric(E,ANE) 6= 0. Then M is Ricci

semi-symmetric if and only if it is totally geodesic.

Proof. In virtue of Theorem 6.1. The converse follows from (4.24), (6.1) and
(5.13). �

Corollary 6.3. Let M be a lightlike hypersurface of an indefinite Kenmotsu

space form M(c), with ξ ∈ Γ(TM) and Ric(E,ANE) 6= 0. Then M is not

Ricci semi-symmetric.

Let M be a lightlike hypersurface of an indefinite Kenmotsu manifold M
c

with ξ ∈ TM . If M is totally contact umbilical, then, in virtue of corollary 3.7
in [15], c = −1 and using the relation (6.2), we have, for any X,Y ∈ Γ(TM)

(R(E,X) ·Ric)(E, Y ) = B(X,Y )B(ANE,ANE)

= λ2(g(X,Y )− η(X)η(Y ))(g(ANE,ANE)− 1),(6.3)

which lead, by taking X = V and Y = U to

(6.4) (R(E, V ) · Ric)(E,U) = λ2(g(ANE,ANE)− 1),
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and we have the following result.

Proposition 6.4. Let M be a totally contact umbilical lightlike hypersurface

of an indefinite Kenmotsu manifold M
c
, with ξ ∈ TM and g(ANE,ANE) 6= 1.

Then M is Ricci semi-symmetric if and only if M is totally geodesic.

Let M be a lightlike hypersurface of an indefinite Kenmotsu manifold M
c
,

with ξ ∈ TM . It is clear that, if Ric(E,ANE) 6= 0, then ANE ∈ Γ(S(TM))−
〈ξ〉. Thus, from Theorem 4.5, Theorem 4.10, Theorem 5.6, Theorem 5.10
and Theorem 6.2, we obtain equivalence between parallel, semi-parallel, local
symmetry, semi-symmetry and Ricci semi-symmetry notions.

Theorem 6.5. In lightlike hypersurfaces of indefinite Kenmotsu space form

M(c), tangent to the structure vector field ξ and Ric(E,ANE) 6= 0, the condi-

tions (4.3), (4.27), (5.1), (5.16) and (6.1) are equivalent.
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