DOI QR코드

DOI QR Code

MEROMORPHIC FUNCTIONS SHARING FOUR VALUES WITH THEIR DIFFERENCE OPERATORS OR SHIFTS

  • Li, Xiao-Min (Department of Mathematics Ocean University of China) ;
  • Yi, Hong-Xun (Department of Mathematics Shandong University)
  • Received : 2015.07.30
  • Published : 2016.07.31

Abstract

We prove a uniqueness theorem of nonconstant meromorphic functions sharing three distinct values IM and a fourth value CM with their shifts, and prove a uniqueness theorem of nonconstant entire functions sharing two distinct small functions IM with their shifts, which respectively improve Corollary 3.3(a) and Corollary 2.2(a) from [12], where the meromorphic functions and the entire functions are of hyper order less than 1. An example is provided to show that the above results are the best possible. We also prove two uniqueness theorems of nonconstant meromorphic functions sharing four distinct values with their difference operators.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, National Natural Science Foundation of Shandong Province

References

  1. W. W. Adams and E. G. Straus, Non-Archimedian analytic functions taking the same values at the same points, Illinois J. Math. 15 (1971), 418-424.
  2. J. M. Anderson and J.Clunie, Slowly growing meromorphic functions, Comment. Math. Helv. 40 (1966), 267-280.
  3. D. Barnett, R. G. Halburd, R. J. Korhonen, and W. Morgan, Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations, Proc. Roy. Soc. Edinburgh Sect. A. 137 (2007), no. 3, 457-474. https://doi.org/10.1017/S0308210506000102
  4. W. Bergweiler and J. K. Langley, Zeros of differences of meromorphic functions, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 1, 133-147. https://doi.org/10.1017/S0305004106009777
  5. Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of f(z+$\eta$) and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129. https://doi.org/10.1007/s11139-007-9101-1
  6. G. G. Gundersen, Meromorphic functions that share three values IM and a fourth value CM, Complex Variables Theory Appl. 20 (1992), no. 1-4, 99-106. https://doi.org/10.1080/17476939208814590
  7. R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.
  8. R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477-487. https://doi.org/10.1016/j.jmaa.2005.04.010
  9. R. Halburd, R. Korhonen, and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4267-4298. https://doi.org/10.1090/S0002-9947-2014-05949-7
  10. W. K. Hayman, Slowly growing integral and subharmonic functions, Comment. Math. Helv. 34 (1960), 75-84. https://doi.org/10.1007/BF02565929
  11. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
  12. J. Heittokangas, R. Korhonen, I. Laine, and J. Rieppo, Uniqueness of meromorphic functions sharing values with their shifts, Complex Var. Elliptic Equ. 56 (2011), no. 1-4, 81-92. https://doi.org/10.1080/17476930903394770
  13. J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, and J. L. Zhang, Value sharing results for shifts of meromorphic function and sufficient conditions for periodicity, J. Math. Anal. Appl. 355 (2009), no. 1, 352-363. https://doi.org/10.1016/j.jmaa.2009.01.053
  14. X. H. Hua and M. L. Fang, Meromorphic functions sharing four small functions, Indian J. Pure Appl. Math. 28 (1997), no. 6, 797-811.
  15. G. Jank and L. Volkmann, Einfuhrung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhauser, Basel-Boston, 1985.
  16. I. Lahiri, Weighted sharing of three values and uniqueness of meromorphic functions, Kodai Math. J. 24 (2001), no. 3, 421-435. https://doi.org/10.2996/kmj/1106168813
  17. I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin/New York, 1993.
  18. I. Laine and C. C. Yang, Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc. (2) 76 (2007), no. 3, 556-566. https://doi.org/10.1112/jlms/jdm073
  19. I. Laine and C. C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A 83 (2007), no. 8, 148-151. https://doi.org/10.3792/pjaa.83.148
  20. A. Z. Mokhon'ko, On the Nevanlinna characteristics of some meromorphic functions, in: Theory of Functions, Functional Analysis and Their Applications vol. 14, 83-87, Izd-vo Khar'kovsk, Un-ta, Kharkov, 1971.
  21. J. M. Whittaker, Interpolatory Function Theory, Cambridge Tract No. 33, Cambridge University Press, 1964.
  22. C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
  23. H. X. Yi, Uniqueness theorems for meromorphic functions concerning small functions, Indian J. Pure Appl. Math. 32 (2001), no. 6, 903-914.
  24. J. L. Zhang, Value distribution and shared sets of differences of meromorphic functions, J. Math. Anal. Appl. 367 (2010), no. 2, 401-408. https://doi.org/10.1016/j.jmaa.2010.01.038
  25. J. L. Zhang and R. Korhonen, On the Nevanlinna characteristic of f(qz) and its applications, J. Math. Anal. Appl. 369 (2010), no. 2, 537-544. https://doi.org/10.1016/j.jmaa.2010.03.038

Cited by

  1. Uniqueness of entire functions sharing two values with their difference operators vol.2017, pp.1, 2017, https://doi.org/10.1186/s13662-017-1444-3