DOI QR코드

DOI QR Code

Effect of Fermented Herbal Mixture against Oxidative Stress in HepG2 and PC12 Cells

HepG2 및 PC12 세포에서 혼합 한약재 발효물의 산화적 스트레스 억제 활성 평가

  • Lee, Yunjeong (Department of Food and Nutrition, Kyungnam University) ;
  • Kim, Nan-Seul (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Shon, Myung-Soo (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Kim, Gyo-Nam (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Hwang, Yong-Il (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Park, Eunju (Department of Food and Nutrition, Kyungnam University)
  • 이윤정 (경남대학교 식품영양학과) ;
  • 김난슬 (경남대학교 식품생명학과) ;
  • 손명수 (경남대학교 식품생명학과) ;
  • 김교남 (경남대학교 식품생명학과) ;
  • 황용일 (경남대학교 식품생명학과) ;
  • 박은주 (경남대학교 식품영양학과)
  • Received : 2016.03.07
  • Accepted : 2016.05.09
  • Published : 2016.07.31

Abstract

This study was carried out to investigate the effect of fermented herbal mixtures (FHMs) in HepG2 and PC12 cells. Two different types of fermented herbal mixtures consisted of Chrysanthemum morifolium, Ganoderma lucidum, Acanthopanax senticosus, Schisandra chinensis, Hovenia dulcis thumb, and Lycii fructus. FHM-A and FHM-B were separately fermented with Prunellae Spica, Portulaca oleracea (FHM-A) and Acorus gramineus, Pycnostelma paniculatum (FHM-B). Total phenolic content of FHM-B was higher than that of FHM-A. ORAC values in both FHM-A and FHM-B increased in a dose-dependent manner, and antioxidant activities against peroxyl radicals were higher in FHM-A than FHM-B. Both FHM-A and FHM-B effectively ameliorated AAPH- and ethanol-induced oxidative stress in HepG2 cells. They also suppressed lipid formation induced by ethanol treatment. In addition, FHM-A and FHM-B prevented $H_2O_2$-induced PC12 cell death. FHM-B showed a relatively stronger protective effect than that of FMB-A. Taken together, these findings show that a fermented herbal mixture could be used in healthy and functional food design for oxidative stress-related diseases.

생체 내에서 발생하는 활성산소종(ROS)은 정상적인 상태에서 체내의 항산화 효소와 물질에 의해서 소거되지만, ROS가 과도하게 생성되면 산화적 스트레스를 유발한다. 천연물을 이용하여 이러한 ROS를 경감시켜 산화적 스트레스를 감소시키는 것은 만성 질병을 예방하고 각종 질병의 합병증을 예방할 수 있는 식이 전략의 하나이다. 본 연구에서는 국화, 영지, 가시오가피, 오미자, 지구자, 구기자, 그리고 산수유를 공통으로 한 혼합 한약재 발효액을 제조하였으며, 조성에 따라 하고초와 쇠비름이 추가된 FHM-A 및 석창포와 산해박이 추가된 FHM-B로 구분하였으며, 혼합 한약재 발효물을 활용하여 차 및 음료 개발에 있어 기초자료로 활용하고자 하였다. FHM-A 및 FHM-B의 총페놀 함량을 분석한 결과 FHM-B에서 유의적으로 높은 총페놀 함량이 나타났다. ORAC value는 FHM-A가 FHM-B보다 유의적으로 높은 활성을 나타냈고, ROS 생성 억제 활성은 FHM-A와 FHM-B 간에 차이가 나타나지 않았다. 간세포인 HepG2 세포에서 에탄올로 유도된 산화적 스트레스에 대한 발효액 FHM-A 및 FHM-B는 $10{\sim}100{\mu}g/mL$에서 모두 세포독성을 나타내지 않았으며, FHM-A와 FHM-B 모두 에탄올로 유도된 세포독성에 대한 보호 효과를 나타냈다. 또한, FHM-A와 FHM-B 모두 에탄올로 유도된 산화적 스트레스로 인해 증가한 지방축적을 억제하는 효과를 나타냈다. 신경세포인 PC12 세포에서 $H_2O_2$로 유도된 산화적 스트레스에 대한 발효액 FHM-A 및 FHM-B의 분석 결과 $1{\sim}50{\mu}g/mL$에서 FHM-A와 FHM-B 모두 세포독성을 나타내지 않았으며, FHM-A와 FHM-B 모두 농도 의존적으로 $H_2O_2$로 유도된 세포독성에 대한 보호효과를 나타냈다. FHM-B는 항산화제로 잘 알려진 비타민 C와 같은 수준의 높은 세포보호 효과를 확인하였다. 이상의 연구 결과는 발효액 FHM-A와 FHM-B가 간 기능 및 신경 스트레스와 관련된 질병 예방을 위한 식품개발에 있어 기초 자료로 활용될 수 있음을 보여준다.

Keywords

References

  1. Song YB, Kwak YS, Park KH, Chang SK. 2002. Effect of total saponin from red ginseng on activities of antioxidant enzymes in pregnant rats. J Ginseng Res 26: 139-144. https://doi.org/10.5142/JGR.2002.26.3.139
  2. Coyle JT, Puttfarcken P. 1993. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689-695. https://doi.org/10.1126/science.7901908
  3. Ricci JE, Waterhouse N, Green DR. 2003. Mitochondrial functions during cell death, a complex (I-V) dilemma. Cell Death Differ 10: 488-492. https://doi.org/10.1038/sj.cdd.4401225
  4. Pokorny J, Yanishlieva N, Gordon MH. 2001. Antioxidants in food: practical application. Woodhead Publishing, Ltd., Cambridge, UK. p 148.
  5. Larson RA. 1988. The antioxidants of higher plants. Phytochemistry 27: 969-978. https://doi.org/10.1016/0031-9422(88)80254-1
  6. Ju JC, Shin JH, Lee SJ, Cho HS, Sung NJ. 2006. Antioxidative activity of hot water extracts from medicinal plants. J Korean Soc Food Sci Nutr 35: 7-14. https://doi.org/10.3746/jkfn.2006.35.1.007
  7. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. 2004. Screening of the antioxidant activity of some medicinal plants. Korean J Food Sci Technol 36: 333-338.
  8. Lee SJ, Shin JH, Kang JR, Hwang CR, Sung NJ. 2012. In vitro evaluation of biological activities of Wa-song (Orostachys japonicus A. Berger) and Korean traditional plants mixture. J Korean Soc Food Sci Nutr 41: 295-301. https://doi.org/10.3746/jkfn.2012.41.3.295
  9. Lee MH, Han MH, Yoon JJ, Song MK, Kim MJ, Hong SH, Choi BT, Kim BW, Hwang HJ, Choi YH. 2014. Medicinal herb extracts attenuate 1-chloro-2,4-dinitrobenzene-induced development of atopic dermatitis-like skin lesions. J Life Sci 24: 851-859. https://doi.org/10.5352/JLS.2014.24.8.851
  10. Woo JH, Shin SL, Jeong HS, Lee CH. 2010. Antioxidant effect of extracts obtained from three Chrysanthemum species. J Korean Soc Food Sci Nutr 39: 631-636. https://doi.org/10.3746/jkfn.2010.39.4.631
  11. Kim DB, Shin GH, Lee JS, Lee OH, Park IJ, Cho JH. 2014. Antioxidant and nitrite scavenging activities of Acanthopanax senticosus extract fermented with different mushroom mycelia. Korean J Food Sci Technol 46: 205-212. https://doi.org/10.9721/KJFST.2014.46.2.205
  12. Jeong GS, An RB, Pae HO, Oh GS, Chung HT, Kim YC. 2008. Heme oxygenase-1 inducing constituent of Prunella vulgaris in HepG2 cells. Biol Pharm Bull 31: 531-533. https://doi.org/10.1248/bpb.31.531
  13. Choi H, Kim SH, Lee DY, Ahn DJ, Kang WH, Lyu YS. 2002. The effects of Rhizoma Acori Graminei water extract in Alzheimer's disease model induced by pCT105. J Orient Neuropsychiatry 13: 173-194.
  14. Folin O, Denis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243.
  15. Kurihara H, Fukami H, Asami S, Toyoda Y, Nakai M, Shibata H, Yao XS. 2004. Effects of oolong tea on plasma antioxidative capacity in mice loaded with restraint stress assessed using the oxygen radical absorbance capacity (ORAC) assay. Biol Pharm Bull 27: 1093-1098. https://doi.org/10.1248/bpb.27.1093
  16. Lautraite S, Bigot-Lasserre D, Bars R, Carmichael N. 2003. Optimisation of cell-based assays for medium throughput screening of oxidative stress. Toxicol In Vitro 17: 207-220. https://doi.org/10.1016/S0887-2333(03)00005-5
  17. Oh CH, Kim GN, Lee SH, Lee JS, Jang HD. 2010. Effects of heat processing time on total phenolic content and antioxidant capacity of ginseng Jung Kwa. J Ginseng Res 34: 198-204. https://doi.org/10.5142/jgr.2010.34.3.198
  18. Cao G, Alessio HM, Cutler RG. 1993. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med 14: 303-311. https://doi.org/10.1016/0891-5849(93)90027-R
  19. Chen YC, Shen SC, Lee WR, Lin HY, Ko CH, Shih CM, Yang LL. 2002. Wogonin and fisetin induction of apoptosis through activation of caspase 3 cascade and alternative expression of p21 protein in hepatocellular carcinoma cells SK-HEP-1. Arch Toxicol 76: 351-359. https://doi.org/10.1007/s00204-002-0346-6
  20. Khan N, Afaq F, Syed DN, Mukhtar H. 2008. Fisetin, a novel dietary flavonoid, causes apoptosis and cell cycle arrest in human prostate cancer LNCaP cells. Carcinogenesis 29: 1049-1056. https://doi.org/10.1093/carcin/bgn078
  21. Alia M, Mateos R, Ramos S, Lecumberri E, Bravo L, Goya L. 2006. Influence of quercetin and rutin on growth and antioxidant defense system of a human hepatoma cell line (HepG2). Eur J Nutr 45: 19-28. https://doi.org/10.1007/s00394-005-0558-7
  22. Park MJ, Han JS. 2013. Protective effects of the fermented Laminaria japonica extract on oxidative damage in LLCPK1 cells. Prev Nutr Food Sci 18: 227-233. https://doi.org/10.3746/pnf.2013.18.4.227
  23. Lee YA, Kim HY, Cho EJ. 2005. Comparison of methanol extracts from vegetables on antioxidative effect under in vitro and cell system. J Korean Soc Food Sci Nutr 34: 1151-1156. https://doi.org/10.3746/jkfn.2005.34.8.1151
  24. Li H, Min Q, Ouyang C, Lee J, He C, Zou MH, Xie Z. 2014. AMPK activation prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 signaling and endoplasmic reticulum stress response. Biochim Biophys Acta 1842: 1844-1854. https://doi.org/10.1016/j.bbadis.2014.07.002
  25. Wan Y, Liu LY, Hong ZF, Peng J. 2014. Ethanol extract of Cirsium japonicum attenuates hepatic lipid accumulation via AMPK activation in human HepG2 cells. Exp Ther Med 8: 79-84. https://doi.org/10.3892/etm.2014.1698
  26. Jeong HR, Choi GN, Kim JH, Kwak JH, Kim YS, Jeong CH, Kim DO, Heo HJ. 2010. Nutritional components and their antioxidative protection of neuronal cells of litchi (Litchi chinensis Sonn.) fruit pericarp. Korean J Food Sci Technol 42: 481-487.
  27. Muthaiyah B, Essa MM, Chauhan V, Chauhan A. 2011. Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells. Neurochem Res 36: 2096-2103. https://doi.org/10.1007/s11064-011-0533-z
  28. Lee PSC, Yan AL, Gong AGW, Choi RCY, Lin HQ, Tsim KWK. 2015. The water extract of Angelica Sinensis Radix protects cultured PC12 cells against oxidative stress: Suppression of reactive oxygen species and activation of antioxidant response elements. Oxid Antioxid Med Sci 4: 39-48. https://doi.org/10.5455/oams.040315.or.082

Cited by

  1. 고장초 추출물의 t-BHP로 산화적 손상이 유도된 HepG2 세포 보호 효과 vol.31, pp.3, 2021, https://doi.org/10.5352/jls.2021.31.3.338