DOI QR코드

DOI QR Code

In vitro Multiplication through Single-Node Culture of Sea-Milkwort (Glaux maritima L.)

갯봄맞이(Glaux maritima L.) 실생의 단마디배양을 통한 기내증식

  • Bae, Su-Ji (Center for Genome Engineering, Institute for Basic Science (IBS)) ;
  • Kang, Beum-Chang (Center for Genome Engineering, Institute for Basic Science (IBS)) ;
  • Jeong, Mihye (R&D Coordination Division, Research Policy Bureau, Rural Development Administration (RDA)) ;
  • Kim, Soochong (College of Veterinary Medicine, Chungbuk National University) ;
  • Kim, Chang Kil (Department of Horticultural Science, College of Agriculture & Life Sciences, Kyungpook National University) ;
  • Han, Jeung-Sul (Department of Horticultural Science, College of Agriculture & Life Sciences, Kyungpook National University)
  • 배수지 (기초과학연구원 유전체교정연구단) ;
  • 강범창 (기초과학연구원 유전체교정연구단) ;
  • 정미혜 (농촌진흥청 연구정책국 연구운영과) ;
  • 김수종 (충북대학교 수의과대학) ;
  • 김창길 (경북대학교 농업생명과학대학 원예과학과) ;
  • 한증술 (경북대학교 농업생명과학대학 원예과학과)
  • Received : 2015.12.05
  • Accepted : 2016.06.12
  • Published : 2016.06.30

Abstract

This study was conducted to establish an in vitro propagation system for sea-milkwort (Glaux maritima L.), which is an endangered coastal plant species with high horticultural value. Two phenotypes, 'Red type (RT)' and 'Pistachio type (PT)' based on the colors of stem and flower, were obtained from a personal horticulturist in 2009 and used for this study as plant materials. The stock plants showed typical morphologies in flower, capsule, and seed appearances as previously reported. Low temperature treatment at $4^{\circ}C$ for four or more weeks after in vitro sowing maximized seed germination percentage, indicating that imbibition of seed and subsequent low temperature treatment are crucial for its germination. The in vitro seedlings had phenotypic variation, falling into 'RT' and 'PT' classes like the stock plants. Although slight differences depending on genotype and medium were recognized, the fourth or fifth nodes detached from the in vitro seedlings revealed the best multiplication efficacy when estimated on the basis of total number of nodes of newly developed axillary shoots. In addition, the nodes from 'RT' and 'PT' regenerated the most shoots on medium supplemented with $0.5mg{\cdot}L^{-1}$ BA alone and $0.5mg{\cdot}L^{-1}$ BA plus $0.5mg{\cdot}L^{-1}$ IAA, respectively. The node culture-derived plantlets were well acclimatized in a culture room ex vitro and completed the pseudo-annual life cycle coincident with that in the natural salt march habitat with the current cultivation method of applying fresh water-irrigation under an inland environment. This work represents the first report of in vitro propagation of sea-milkwort. Thus, our study will contribute to exo-habitat conservation and natural habitat restoration of this endangered species in addition to development of a horticultural product.

본 연구는 원예적 가치가 높은 멸종위기 해안식물인 갯봄맞이(Glaux maritima L.)의 기내번식 체계를 확립하기 위하여 수행되었다. 2009년 개인 원예가로부터 갯봄맞이가 심겨진 화분을 분양 받아 줄기와 꽃의 색을 기준으로 'Red type'(RT)과 'Pistachio type'(PT)으로 구분한 후 본 연구의 식물 재료로 사용하였다. 분양 받은 모식물체는 예전 연구 보고에서와 일치하는 꽃, 삭과 및 종자의 외형을 나타내었다. 기내 파종 후 $4^{\circ}C$의 저온에서 4주 이상 처리하였을 때 종자 발아율이 최대에 달했는데, 이는 종자흡습에 이어서 저온처리가 종자의 발아에 필수적이라는 것을 나타내는 것이다. 기내 실생은 모식물체와 동일하게 'RT'와 'PT' 표현형으로 분리하는 것이 관찰되었다. 새롭게 신장한 액아 유래 신초의 마디 수 합을 기준으로 판단한 증식 효율은 표현형과 배지의 종류에 따라 다소 차이가 있기는 했지만 기내 실생에서 절취한 제4절과 제5절을 배양했을 때 가장 높았다. 더불어, 'RT'와 'PT' 표현형의 마디를 BA $0.5mg{\cdot}L^{-1}$ 단용 배지와 BA $0.5mg{\cdot}L^{-1}$ + IAA $0.5mg{\cdot}L^{-1}$ 혼용 배지에서 각각 배양하는 것이 신초 분화율을 가장 높였다. 마디배양 유래 유식물체는 배양실에서 양호하게 기외 순화되었고, 비록 내륙 환경에서 담수 관수를 하는 재배법을 사용했지만 염습 자생지에서와 동일하게 유사일년생 생활환을 완성하였다. 본 연구는 갯봄맞이의 기내 번식에 관한 한 최초인 것으로 판단되며 본 연구의 결과는 이 희귀 종의 서식지외 보존, 자생지 복원 및 원예용으로의 개발에 유용하게 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Bunn E, Turner SR, Dixon KW (2011) Biotechnology for saving rare and threatened flora in a biodiversity hotspot. In Vitro Cell Dev Biol-Plant 47:188-200. doi:10.1007/S11627-011-9340-0
  2. Day J (2000) The effect of plant growth regulator treatments on plant productivity and capsule dehiscence in sesame. Field Crop Res 66:15-24. doi:10.1016/S0378-4290(99)00076-3
  3. Druva-Lusite I, Karlsons A, Osvalde A, Necajeva J, Ievinsh G (2008) Photosynthetic performance and mycorrhizal symbiosis of a coastal marsh plant, Glaux maritima , in conditions of fluctuating soil salinity. Acta Univ Latviensis 745:155-164
  4. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945-963. doi:10.1111/j.1469-8137.2008.02531.x
  5. Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Quarterly Rev Biol 61:313-337. doi:10.1086/415032
  6. Freipica I, Ievinsh G (2010) Relative NaCl tolerance of rare and endangered coastal plant species in conditions of tissue culture. Env Exp Biol 8:35-42
  7. IUCN (2015) Threatened species in past and present IUCN Red Lists: 2015, The IUCN Red List of Threatened SpeciesTM 2-2015:Summary statistics. Available via http://www.iucnredlist.org/about/summary-statistics#Tables_1_2 Accessed 9 September 2015
  8. Jerling L (1988a) Clone dynamics, population dynamics and vegetation pattern of Glaux maritima on a Baltic sea shore meadow. Vegetatio 74:171-185. doi:10.1007/BF00044742
  9. Jerling L (1988b) Population dynamics of Glaux maritima L. along a distributional cline. Vegetatio 74:161-170. doi:10.1007/BF00044741
  10. Jerling L, Berglund A (1994) Ecological effects of the parasitic rust fungus Uromyces lineolatus (Pucciniaceae) on Glaux maritima (Primulaceae). Ecography 17:209-214. doi:10.1111/j.1600-0587.1994.tb00095.x
  11. Kallersjo M, Bergqvist G, Anderberg AA (2000) Generic realignment in primuloid families of the Ericales s.l.: a phylogenetic analysis based on DNA sequences from three chloroplast genes and morphology. Am J Bot 80:1325-1341. doi:10.2307/2656725
  12. Khan MA, Gul B (2005) Halophyte seed germination. In MA Khan, DJ Weber, eds, Ecophysiology of high salinity tolerant plants (Tasks for vegetation science). Springer, Houten, The Netherlands, pp 11-30
  13. Mikulík J (1999) Propagation of endangered plant species by tissue cultures. Acta Univ Palacki Olomuc Fac Rer Nat 37:27-33
  14. Morozowska M, Czarna A, Kujawa M, Jagodzinski AM (2011) Seed morphology and endosperm structure of selected species of Primulaceae, Myrsinaceae, and Theophrastaceae and their systematic importance. Plan Syst Evol 291:159-172. doi:10.1007/s00606-010-0374-2
  15. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473-497. doi:10.1111/j.1399-3054.1962.tb08052.x
  16. NIBR (National Institue of Biological Resources) (2012) Korean Red List of Threatened Species-Vascular plants. Nature and Ecology, Incheon, Republic of Korea.
  17. Pence VC (2011) Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell Dev Biol-Plant 47:176-187. doi:10.1007/s11627-010-9323-6
  18. Pence VC (2013) In vitro methods and the challenge of exceptional species for target 8 of the global strategy for plant conservation. Ann Miss Bot Gard 99:214-220. doi:10.3417/2011112
  19. Rozema J (1975) The influence of salinity, inundation and temperature on the germination of some halophytes and non-halophytes. Oecologia Plant 10:341-353
  20. Rozema J, Riphagen I (1977) Physiology and ecologic relevance of salt secretion by the salt gland of Glaux maritima L. Oecologia 29:349-357. doi:10.1007/BF00345808
  21. Rozema J, Riphagen I, Sminia T (1977) A light and electron-microscopical study on the structure and function of the salt gland of Glaux maritima L. New Phytol 79:665-671. doi:10.1111/j.1469-8137.1977.tb02251.x
  22. Son SW, Lee BC, Yang HH, Seol YJ (2011) Distribution of five rare plants in Korea. Korean J Pl Taxon 41:280-286 https://doi.org/10.11110/kjpt.2011.41.3.280
  23. Strandkryp N, Rannikki F (2009) 135. Strandkrypa, Glaux maritima L.: Bilder ur Nordens Flora. Available via http://runeberg.org/nordflor/135.html Accessed 9 September 2015