DOI QR코드

DOI QR Code

Development of Aerosol-LIBS (Laser Induced Breakdown Spectroscopy) for Real-time Monitoring of Process-induced Particles

공정 중 발생 오염입자 실시간 모니터링을 위한 에어로졸-레이저 유도 플라즈마 분광분석 시스템 개발

  • Kim, Gibaek (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Kim, Kyoungtae (Manufacturing Engineering Team, Memory Division, Samsung Electronics Co., LTD.) ;
  • Maeng, Hyunok (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Lee, Hae Bum (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Park, Kihong (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology)
  • 김기백 (광주과학기술원 지구.환경공학부) ;
  • 김경태 (삼성전자 메모리 Manufacturing Engineering Team) ;
  • 맹현옥 (광주과학기술원 지구.환경공학부) ;
  • 이해범 (광주과학기술원 지구.환경공학부) ;
  • 박기홍 (광주과학기술원 지구.환경공학부)
  • Received : 2016.07.06
  • Accepted : 2016.09.24
  • Published : 2016.09.30

Abstract

The laser-induced breakdown spectroscopy (LIBS) has been used for rapid detection of elemental compositions of various materials in multi-media (solid, liquid, gas, and aerosols). In this study, the aerosol-LIBS has been developed for real-time monitoring of process-induced particles produced during the semiconductor manufacturing. The developed aerosol-LIBS mainly consists of laser, optics, spectrometer, and aerosol chamber. A new aerosol chamber was constructed for the aerosol-LIBS to be applied for various semiconductor manufacturing process, including exhaust tubes, and low pressure and high temperature chamber. The aerosol-LIBS was evaluated by using laboratory generated aerosols for detection of various elements. As a result, P, Fe, Mg, Cu, Co, Ni, Ca, Na, and K emission lines were successfully detected by the aerosol-LIBS. Further evaluation of the aerosol-LIBS is being conducted.

Keywords

References

  1. Baltzinger, J. and Delahaye, B. (2010). Contamination monitoring and analysis in semiconductor manufacturing. Semiconductor Technologies:57-78.
  2. Bendicho, C., Lavilla, I., Pena-Pereira, F. and Romero, V. (2012). Green chemistry in analytical atomic spectrometry: A review. Journal of Analytical Atomic Spectrometry 27:1831-1857. https://doi.org/10.1039/c2ja30214d
  3. Winefordner, J. D., Gornushkin, I. B., Correll, T., Gibb, E., Smith, B. W. and Omenetto, N. (2004). Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser induced breakdown spectrometry, LIBS, a future super star. Journal of Analytical Atomic Spectrometry 19:1061-1083. https://doi.org/10.1039/b400355c
  4. Park, K., Cho, G. and Kwak, J. H. (2009). Development of an Aerosol Focusing-Laser Induced Breakdown Spectroscopy (Aerosol Focusing-LIBS) for determination of fine and ultrafine metal aerosols. Aerosol Science and Technology 43:375-386. https://doi.org/10.1080/02786820802662947
  5. Cremers, D. A. and Radziemski, L. J. (2006). Handbook of Laser-induced Breakdown Spectroscopy.
  6. Gottfried, J. L., De Lucia Jr, F. C., Munson, C. A. and Miziolek, A. W. (2008). Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy. Applied Spectroscopy 62:353-363. https://doi.org/10.1366/000370208784046759
  7. Lopez-Moreno, C., Palanco, S., Laserna, J. J., DeLucia Jr, F., Miziolek, A. W., Rose, J., Walters, R. A. and Whitehouse, A. I. (2006). Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces. Journal of Analytical Atomic Spectrometry 21:55-60. https://doi.org/10.1039/B508055J
  8. Barefield, J. E., II, Judge, E. J., Campbell, K. R., Colgan, J. P., Kilcrease, D. P., Johns, H. M., Wiens, R. C., McInroy, R. E., Martinez, R. K. and Clegg, S. M. (2016). Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS). Spectrochimica Acta - Part B Atomic Spectroscopy 120:1-8. https://doi.org/10.1016/j.sab.2016.03.012
  9. Maurice, S., Clegg, S. M., Wiens, R. C., Gasnault, O., Rapin, W., Forni, O., Cousin, A., Sautter, V., Mangold, N., Le Deit, L., Nachon, M., Anderson, R. B., Lanza, N. L., Fabre, C., Payre, V., Lasue, J., Meslin, P. Y., Leveille, R. J., Barraclough, B. L., Beck, P., Bender, S. C., Berger, G., Bridges, J. C., Bridges, N. T., Dromart, G., Dyar, M. D., Francis, R., Frydenvang, J., Gondet, B., Ehlmann, B. L., Herkenhoff, K. E., Johnson, J. R., Langevin, Y., Madsen, M. B., Melikechi, N., Lacour, J. L., Le Mouelic, S., Lewin, E., Newsom, H. E., Ollila, A. M., Pinet, P., Schroder, S., Sirven, J. B., Tokar, R. L., Toplis, M. J., D'Uston, C., Vaniman, D. T. and Vasavada, A. R. (2016). ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. Journal of Analytical Atomic Spectrometry 31:863-889. https://doi.org/10.1039/C5JA00417A
  10. Lennard, C., El-Deftar, M. M. and Robertson, J. (2015). Forensic application of laser-induced breakdown spectroscopy for the discrimination of questioned documents. Forensic Sci. Int. 254:68-79. https://doi.org/10.1016/j.forsciint.2015.07.003
  11. Alvira, F. C., Bilmes, G. M., Flores, T. and Ponce, L. (2015). Laser-induced breakdown spectroscopy (LIBS) quality control and origin identification of handmade manufactured cigars. Applied Spectroscopy 69:1205-1209. https://doi.org/10.1366/15-07935
  12. Grifoni, E., Legnaioli, S., Lorenzetti, G. and Pagnotta, S. (2015). Applying LIBS to metals processing. Spectroscopy (Santa Monica) 30:20-31.