DOI QR코드

DOI QR Code

Axial compressive behaviour of circular CFFT: Experimental database and design-oriented model

  • Khan, Qasim S. (School of Civil, Mining and Environmental Engineering, University of Wollongong) ;
  • Sheikh, M. Neaz (School of Civil, Mining and Environmental Engineering, University of Wollongong) ;
  • Hadi, Muhammad N.S. (School of Civil, Mining and Environmental Engineering, University of Wollongong)
  • Received : 2016.04.21
  • Accepted : 2016.06.23
  • Published : 2016.07.20

Abstract

Concrete Filled Fibre Reinforced Polymer Tube (CFFT) for new columns construction has attracted significant research attention in recent years. The CFFT acts as a formwork for new columns and a barrier to corrosion accelerating agents. It significantly increases both the strength capacity (Strength enhancement ratio) and the ductility (Strain enhancement ratio) of reinforced concrete columns. In this study, based on predefined selection criteria, experimental investigation results of 134 circular CFFT columns under axial compression have been compiled and analysed from 599 CFFT specimens available in the literature. It has been observed that actual confinement ratio (expressed as a function of material properties of fibres, diameter of CFFT and compressive strength of concrete) has significant influence on the strength and ductility of circular CFFT columns. Design oriented models have been proposed to compute the strength and strain enhancement ratios of circular CFFT columns. The proposed strength and strain enhancement ratio models have significantly reduced Average Absolute Error (AAE), Mean Square Error (MSE), Relative Standard Error of Estimate (RSEE) and Standard Deviation (SD) as compared to other available strength and strain enhancement ratios of circular CFFT column models. The predictions of the proposed strength and strain enhancement ratio models match well with the experimental strength and strain enhancement ratios investigation results in the compiled database.

Keywords

References

  1. Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Predicting the axial load capacity of high-strength concrete filled steel tubular columns", Steel Compos. Struct., Int. J., 19(4), 967-99. https://doi.org/10.12989/scs.2015.19.4.967
  2. Berthet, J., Ferrier, E. and Hamelin, P. (2005), "Compressive behaviour of concrete externally confined by composite jackets. Part A: Experimental study", Construct. Build. Mater., 19(3), 223-232. https://doi.org/10.1016/j.conbuildmat.2004.05.012
  3. Choi, K. and Xiao, Y. (2010), "Analytical studies of concrete-filled circular steel tubes under axial compression", J. Struct. Eng., 136(5), 565-573. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000156
  4. Cole, B. and Fam, A. (2006), "Flexural load testing of concrete-filled FRP tubes with longitudinal steel and FRP rebar", J. Compos. Construct., 10(2), 161-171. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:2(161)
  5. De Lorenzis, L. and Tepfers, R. (2003), "Comparative study of models on confinement of concrete cylinders with Fiber-Reinforced Polymer composites", J. Compos. Construct., 7(3), 219-237. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(219)
  6. Demers, M. and Neale, K. (1994), "Strengthening of concrete columns with unidirectional composite sheets", Develop. Short Medium Span Bridge Eng., 94, 895-905.
  7. Fam, A. and Rizkalla, S. (2001a), "Concrete filled FRP tubes for flexural and axial compression members", Proceedings of ACMBS-3, 315-322.
  8. Fam, A.Z. and Rizkalla, S.H. (2001b), "Behaviour of axially loaded concrete filled circular fiber reinforced polymer tubes", ACI Struct. J., 98(3), 280-289.
  9. Fam, A. and Rizkalla, S. (2002), "Flexural behavior of concrete-filled fiber-reinforced polymer circular tubes", J. Compos. Construct., 6(2), 123-132. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(123)
  10. Fam, A., Schnerch, D. and Rizkalla, S. (2005), "Rectangular filament-wound Glass Fiber Reinforced Polymer tubes filled with concrete under flexural and axial loading: Experimental investigation", J. Compos. Construct., 9(1), 25-33. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(25)
  11. Hadi, M.N.S., Wang, W. and Sheikh, M.N. (2015), "Axial compressive behaviour of GFRP tube reinforced concrete columns", Construct. Build. Mater., 81, 198-207. https://doi.org/10.1016/j.conbuildmat.2015.02.025
  12. Hadi, M.N.S., Khan, Q.S. and Sheikh, M.N. (2016), "Axial and flexural behavior of unreinforced and FRP bar reinforced circular concrete filled FRP tube columns", Construct. Build. Mater., 122, 43-53. https://doi.org/10.1016/j.conbuildmat.2016.06.044
  13. Han, L., Yao, G. and Zhao, X. (2004), "Behaviour and calculation on concrete-filled steel CHS (Circular Hollow Section) beam-columns", Steel Compos. Struct., Int. J., 4(3), 169-188. https://doi.org/10.12989/scs.2004.4.3.169
  14. Harries, K.A. and Carey, S.A. (2002), "Shape and gap effects on the behaviour of variably confined concrete", Cement Concrete Res., 33(6), 881-890. https://doi.org/10.1016/S0008-8846(02)01085-2
  15. Hong, W.K. and Kim, H.C. (2004), "Behaviour of concrete columns confined by carbon composites tubes", Can. J. Civil Eng., 31(2), 178-188. https://doi.org/10.1139/l03-078
  16. Idris, Y. and Ozbakkaloglu, T. (2013), "Seismic behavior of high-strength concrete-filled FRP tube columns", J. Compos. Construct., 17(6), 04013013. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000388
  17. Ishizawa, T., Nakano, T. and Iura, M. (2006), "Experimental study on partially concrete-filled steel tubular columns", Steel Compos. Struct., Int. J., 6(1), 55-69. https://doi.org/10.12989/scs.2006.6.1.055
  18. Johannson, M. (2003), "Composite action in connection regions of concrete-filled steel tube columns", Steel Compos. Struct., Int. J., 3(1), 47-64. https://doi.org/10.12989/scs.2003.3.1.047
  19. Jolly, C.K. and Lillistone, D. (1998a), "Concrete filled FRP circular columns under eccentric loading", Proceedings of the 7th International conference on Fibre Reinforced Composites, (P.A.G Gibson Ed.), Woodhead Publishing Ltd., University of Newcastle upon Tyne, UK.
  20. Jolly, C.K. and Lillistone, D. (1998b), "The stress strain behaviour of concrete confined by advanced fiber composites", Proceedings of the 8th BCA Annual Conference on Higher Education and the Concrete Industry, (U.o. Southampton Ed.), England, UK, July.
  21. Karbhari, V. and Gao, Y. (1997), "Composite jacketed concrete under uniaxial compression-verification of simple design equations", J. Mater. Civil Eng., 9(4), 185-193. https://doi.org/10.1061/(ASCE)0899-1561(1997)9:4(185)
  22. Lam, L. and Teng, J. (2002), "Strength models for fiber-reinforced plastic-confined concrete", J. Struct. Eng., 128(5), 612-623. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:5(612)
  23. Lam, L. and Teng, J.G. (2003), "Design-oriented stress-strain model for FRP-confined concrete", Construct. Build. Mater., 17(6-7), 471-489. https://doi.org/10.1016/S0950-0618(03)00045-X
  24. Lee, S. (2007), "Capacity and the moment-curvature relationship of high strength concrete filled steel tube columns under eccentric loads", Steel Compos. Struct., Int. J., 7(2), 135-160. https://doi.org/10.12989/scs.2007.7.2.135
  25. Li, y., Yan, X. and Ou, J.P. (2007), "Compressive behaviour and non linear analysis of self sensing concrete filled FRP tubes and FRP steel Composite tubes", Proceedings of the 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures, Patras, Greece, July.
  26. Lillistone, D. and Jolly, C.K. (1997), "Concrete filled fibre reinforced plastic circular columns", Proceedings of Composite Construction-Conventional and Innovative Conference, Composite Construction-Conventional and Innovative, Innsbruck, Austria, September.
  27. Lillistone, D. and Jolly, C.K. (2000), "An innovative form of reinforcement for concrete columns using advanced composites", The Struct. Eng., 78(23-24), 20-29.
  28. Lim, J.C. and Ozbakkaloglu, T. (2014), "Confinement model for FRP-confined high-strength concrete", J. Compos. Construct., 18(4), 04013058. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000376
  29. Masmoudi, R. and Mohamed, H. (2011), "Axial behaviour of slender concrete filled FRP tube columns reinforced with steel and carbon FRP bars", Proceedings of the 10th International Symposium on Fiber- Reinforced Polymer Reinforcement for Concrete Structures, Tampa, FL, USA, April.
  30. Mastrapa, J.C. (1997), "Effect of construction bond on confinement with fibre composites", Masters; University of Florida, FL, USA.
  31. Matthys, S., Taerwe, L. and Audenaert, K. (1999), "Tests on axially loaded concrete columns confined by fibre reinforced polymer sheet wrapping", In: (C.W. Dolan, S.H. Rizkalla, A. Nanni Ed.), FRPRCS-4, American Concrete Institute, MI, USA.
  32. Mirmiran, A. and Shahawy, M. (1996), "A new concrete-filled hollow FRP composite column", Compos. Part B: Eng., 27(3-4), 263-268. https://doi.org/10.1016/1359-8368(95)00019-4
  33. Mirmiran, A. and Shahawy, M. (1997), "Behaviour of concrete columns confined by fiber composites", J. Struct. Eng., 123(5), 583-590. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(583)
  34. Mirmiran, A., Samaan, M., Cabrera, S. and Shahawy, M. (1998a), "Design, manufacture and testing of a new hybrid column", Construct. Build. Mater., 12(1), 39-49. https://doi.org/10.1016/S0950-0618(97)00073-1
  35. Mirmiran, A., Shahawy, M. and Samaan, M. (1998b), "Strength and ductility of hybrid FRP-concrete beamcolumns", J. Struct. Eng., 125(10), 1085-1093. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:10(1085)
  36. Mirmiran, A., Shahawy, M., Samaan, M., EL Echary, H., Mastrapa, J.C. and Pico, O, (1998c), "Effect of column parameters on FRP confined concrete", J. Compos. Construct., 2(4), 175-185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175)
  37. Mohamed, H. and Masmoudi, R. (2008a), "Behavior of the concrete filled FRP tube columns under eccentric load", Structural Composites for Infrastructure Applications (MESC-5), Hurghada, Egypt.
  38. Mohamed, H. and Masmoudi, R. (2008b), "Compressive behaviour of reinforced concrete filled FRP tubes", Special Publication, 257, 91-108.
  39. Mohamed, H. and Masmoudi, R. (2010), "Axial load capacity of concrete-Filled FRP tube columns: Experimental versus theoretical predictions", J. Compos. Construct., 14(2), 231-243. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000066
  40. Nanni, A. and Bradford, N.M. (1995), "FRP jacketed concrete under uniaxial compression", Construct. Build. Mater., 9(2), 115-124. https://doi.org/10.1016/0950-0618(95)00004-Y
  41. Ozbakkaloglu, T. (2013a), "Axial compressive behavior of square and rectangular high-strength concretefilled FRP tubes", J. Compos. Construct., 17(1), 151-161. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000321
  42. Ozbakkaloglu, T. (2013b), "Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters", Eng. Struct., 51, 188-199. https://doi.org/10.1016/j.engstruct.2013.01.017
  43. Ozbakkaloglu, T. and Lim, J.C. (2013), "Axial compressive behaviour of FRP confined concrete: Experimental test database and a new design oriented model", Compos. Part B: Eng., 55, 607-634. https://doi.org/10.1016/j.compositesb.2013.07.025
  44. Ozbakkaloglu, T. and Oehlers, D. (2008a), "Concrete-filled square and rectangular FRP tubes under axial compression", J. Compos. Construct., 12(4), 469-477. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:4(469)
  45. Ozbakkaloglu, T. and Oehlers, D.J. (2008b), "Manufacture and testing of a novel FRP Tube confinement system", Eng. Struct., 30(9), 2448-2459. https://doi.org/10.1016/j.engstruct.2008.01.014
  46. Ozbakkaloglu, T. and Saatcioglu, M. (2006), "Seismic behavior of high-strength concrete columns confined by fiber-reinforced polymer tubes", J. Compos. Construct., 10(6), 538-549. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:6(538)
  47. Ozbakkaloglu, T. and Vincent, T. (2013), "Axial compressive behavior of circular high-strength concretefilled FRP tubes", J. Compos. Construct., 18(2), 04013037-1-11.
  48. Ozbakkaloglu, T., Lim, J.C. and Vincent, T. (2012), "FRP confined concrete in circular sections: Review and assessment of stress strain models", Eng. Struct., 49, 1068-1088.
  49. Park, J.W. and Choi, S.M. (2013), "Structural behaviour of CFRP strengthened concrete-filled steel tubes columns under axial compression loads", Steel Compos. Struct., Int. J., 14(5), 453-472. https://doi.org/10.12989/scs.2013.14.5.453
  50. Park, J.H., Jo, B.W., Yoon, S.J. and Park, S.K. (2011), "Experimental investigation on the structural behaviour of concrete filled FRP tubes with/without steel rebar", KSCE J. Civil Eng., 15(2), 337-345. https://doi.org/10.1007/s12205-011-1040-0
  51. Pham, T. and Hadi, M. (2013), "Strain estimation of CFRP-confined concrete columns using energy approach", J. Compos. Construct., 17(6), 04013001. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000397
  52. Pham, T. and Hadi, M. (2014a), "Predicting stress and strain of FRP-confined square/rectangular columns using artificial neural networks", J. Compos. Construct., 18(6), 04014019. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000477
  53. Pham, T. and Hadi, M. (2014b), "Stress prediction model for FRP confined rectangular concrete columns with rounded corners", J. Compos. Construct., 18(1), 04013019. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000407
  54. Realfonzo, R. and Napoli, A. (2011), "Concrete confined by FRP systems: Confinement efficiency and design strength models", Compos. Part B: Eng., 42(4), 736-755. https://doi.org/10.1016/j.compositesb.2011.01.028
  55. Richart, F.E., Brandtzaeg, A. and Brown, R.L. (1928), "A study of the failure of concrete under combined compressive stresses", University of Illinois Bulletin; University of Illinois, Urbana, IL, USA.
  56. Saafi, M., Toutanji, H.A. and Li, Z. (1999), "Behaviour of concrete columns confined with fiber reinforced polymer tubes", ACI Mater. J., 96(4), 500-509.
  57. Saaman, M., Mirmiran, A. and Shahawy, M. (1998), "Model of concrete confined by fibre composites", Journal of Structural Engineering, 124(9), 1025-1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025)
  58. Sadeghian, P. and Fam, A. (2015), "Improved design-oriented confinement models for FRP-wrapped concrete cylinders based on statistical analyses", Eng. Struct., 87, 162-182. https://doi.org/10.1016/j.engstruct.2015.01.024
  59. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
  60. Tegola, L.A. and Manni, D. (1999), "Experimental investigation on concrete confined by fibre reinforced polymer and comparisons with theoretical model", In: (C.W. Dolan, S.H. Rizkalla, A. Nanni Ed.), FRPRCS-4; American Concrete Institute, MI, USA.
  61. Toutanji, H.A. (1999), "Stress-strain characteristics of concrete columns externally confined with advanced fibre composite sheets", ACI Mater. J., 96(3), 397-404.
  62. Vincent, T. and Ozbakkaloglu, T. (2013a), "Influence of concrete strength and confinement method on axial compressive behaviour of FRP confined high and ultra high strength concrete", Compos. Part B: Eng., 50, 413-428. https://doi.org/10.1016/j.compositesb.2013.02.017
  63. Vincent, T. and Ozbakkaloglu, T. (2013b), "Influence of fibre orientation and specimen end condition on axial compressive behaviour of FRP confined concrete", Construct. Build. Mater., 47, 814-826. https://doi.org/10.1016/j.conbuildmat.2013.05.085
  64. Woo, P.J., Kyun, H.Y. and Mo, C.S. (2010), "Behaviours of concrete filled square steel tubes confined by carbon fiber sheets (CFS) under compression and cyclic loads", Steel Compos. Struct., Int. J., 10(2), 187-205. https://doi.org/10.12989/scs.2010.10.2.187
  65. Wu, G., Lu, Z. and Wu, Z. (2006), "Strength and ductility of concrete cylinders confined with FRP composites", J. Construct. Build. Mater., 20(3), 134-138. https://doi.org/10.1016/j.conbuildmat.2005.01.022
  66. Wu, Y.F. and Jiang, C. (2013), "Effect of load eccentricity on the stress-strain relationship of FRP-confined concrete columns", Compos. Struct., 98, 228-241. https://doi.org/10.1016/j.compstruct.2012.11.023
  67. Yamakawa, T., Zhong, P. and Ohama, A. (2003), "Seismic performance of aramid fiber square tubed concrete columns with metallic and/or non-metallic reinforcement", J. Reinf. Plast. Compos., 22(13), 1221-1238. https://doi.org/10.1177/0731684403035432
  68. Youssef, M., Feng, M. and Mosallam, A. (2007), "Stress strain model for concrete confined by FRP composites", Compos. Part B : Eng., 38(5-6), 614-628. https://doi.org/10.1016/j.compositesb.2006.07.020
  69. Zhao, X., Grzebieta, R. and Elchalakani, M. (2002), "Tests of concrete-filled double skin CHS composite stub columns", Steel Compos. Struct., Int. J., 2(2), 129-146. https://doi.org/10.12989/scs.2002.2.2.129

Cited by

  1. Axial-Flexural Interactions of GFRP-CFFT Columns with and without Reinforcing GFRP Bars vol.21, pp.3, 2017, https://doi.org/10.1061/(ASCE)CC.1943-5614.0000771
  2. Concrete Filled Carbon FRP Tube (CFRP-CFFT) columns with and without CFRP reinforcing bars: Axial-flexural interactions vol.133, 2018, https://doi.org/10.1016/j.compositesb.2017.09.025
  3. Fire resistance of high strength fiber reinforced concrete filled box columns vol.23, pp.5, 2017, https://doi.org/10.12989/scs.2017.23.5.611
  4. Fire resistance of high strength concrete filled steel tubular columns under combined temperature and loading vol.27, pp.2, 2016, https://doi.org/10.12989/scs.2018.27.2.243
  5. Behavior of steel-concrete jacketed corrosion-damaged RC columns subjected to eccentric load vol.29, pp.6, 2016, https://doi.org/10.12989/scs.2018.29.6.689
  6. Predicting strength and strain enhancement ratios of circular fiber-reinforced polymer tube confined concrete under axial compression using artificial neural networks vol.22, pp.6, 2016, https://doi.org/10.1177/1369433218815229
  7. Tensile Testing of Carbon FRP (CFRP) and Glass FRP (GFRP) Bars: An Experimental Study vol.49, pp.3, 2016, https://doi.org/10.1520/jte20180660
  8. A new empirical formula for prediction of the axial compression capacity of CCFT columns vol.33, pp.2, 2019, https://doi.org/10.12989/scs.2019.33.2.181
  9. Evaluation of Existing Stress-Strain Models and Modeling of PET FRP-Confined Concrete vol.31, pp.12, 2016, https://doi.org/10.1061/(asce)mt.1943-5533.0002941