
IEIE Transactions on Smart Processing and Computing, vol. 5, no. 3, June 2016
http://dx.doi.org/10.5573/IEIESPC.2016.5.3.222 222

IEIE Transactions on Smart Processing and Computing

A Novel Approach for Accessing Semantic Data by
Translating RESTful/JSON Commands into SPARQL
Messages

Khiem Minh Nguyen, Hai Thanh Nguyen, and Hiep Xuan Huynh

College of Information and Communication Technology, Cantho University / Vietnam
{nmkhiem, nthai, hxhiep}@cit.ctu.edu.vn

* Corresponding Author: Hai Thanh Nguyen

Received April 20, 2016; Revised May 15, 2016; Accepted June 3, 2016; Published June 30, 2016

* Extended from a Conference: Preliminary results of this paper were presented at the ICEIC 2016. This present paper has
been accepted by the editorial board through the regular reviewing process that confirms the original contribution.

Abstract: Linked Data is a powerful technology for storing and publishing the structures of data. It
is helpful for web applications because of its usefulness through semantic query data. However,
using Linked Data is not easy for ordinary users who lack knowledge about the structure of data or
the query syntax of Linked Data. For that problem, we propose a translator component that is used
for translating RESTful/JSON request messages into SPARQL commands based on ontology – a
metadata that describes the structure of data. Clients do not need to worry about the structure of
stored data or SPARQL, a kind of query language used for querying linked data that not many
people know, when they insert a new instance or query for all instances of any specific class with
those complex structure data. In addition, the translator component has the search function that can
find a set of data from multiple classes based on finding the shortest paths between the target
classes - the original set that user provide, and target classes- the users want to get. This translator
component will be applied for any dynamic ontological structure as well as automatically generate
a SPARQL command based on users’ request message.

Keywords: Translator component, API, RESTful/JSON to SPARQL, Linked data search

1. Introduction

Linked Data [1], especially Resource Description
Framework (RDF) [2], is a technology that aims to store
graph databases effectively. In order to access the RDF
repository, we need to use SPARQL [3] which is a special
query language for manipulating the data in a Linked Data
server. An ontology is the way to design a linked big data
structure for a distributed system to allow users to use
RESTful/JSON [4] requests to access servers.

Clients have met with difficulties over how to easily
communicate with RDF databases. Clients could use a
uniform resource identifier (URI) as the path that contains
the data request and send it to the Linked Data server.
However, the challenge is that the clients must know the
graph structure and how they can represent the graph
structure of the Linked Data source in a request message.
Conversely, clients could use a SPARQL query as part of a

request message to access Linked Data, but they still need
to know the syntax of the SPARQL language and graph
structure as well.

With RESTful/JSON technology, the ordinary users
(who do not know much about graph databases or
SPARQL syntax) send requests to an ordinary server (not a
Linked Data server) and receive the result easily, because
this is a popular technique and most of them are already
familiar with it. However, there are numerous difficulties
for them when contacting graph databases in the Linked
Data server because they need to know how to construct a
SPARQL statement instead using a simple query, like
JSON strings.

In this paper, we propose a new approach that is an on-
line syntactic and semantic translation service to help users
more easily access a Linked Data server.

This translation service converts RESTful/JSON
messages into SPARQL commands based on the ontology

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 3, June 2016

223

of the target semantic data. Such a translation service
enables RESTful web service clients to access ontology-
based RDF repositories without knowledge of the semantic
data ontology and without the need to issue pattern-
matching SPARQL commands.

The users just send simple JSON strings requested by
RESTful technology, and then the JSON strings are
dynamically translated into SPARQL syntax. Users do not
need to worry about how to use JSON strings to access a
Linked Data server that contains a graph database. This
problem is solved by the translation and is handled
smoothly and seamlessly. This translation is useful
because it supports a way to help people use a popular
technique to easily connect with a new technique. Besides
that, it is an automatic translation for every data structure
defined by users, and makes it comfortable for them to
access the Linked Data server.

For each data access, the translation service produces a
minimal set of SPARQL commands by traversing the
ontological structure of the semantic data, especially
Object Properties and Datatype Properties. Besides that,
we also provide a solution to the class hierarchy problem
because its structure may cause SPARQL to return an
empty result. There have two kinds of class in a
hierarchy’s structure (abstract class and concreate class)
and both of them have a relationship with other classes that
is described in the ontology definition. However, only
concreate class has instances, while abstracts do not have
instances. If the SPARQL command is built based on an
abstract class, we may get an empty set of instances as a
result and should avoid that.

The rest of this paper is organized as follows. In
Section 2, we discuss the related work. A model of a
translator component, and how to automatically generate a
SPARQL statement, are introduced in section 3 and 4.
Three basic operations are supported for this translator (1)
searching specific instances of a class, (2) inserting a new
instance of a class while enforcing the cardinality
restriction specified in the ontology in order to maintain
semantic consistency among the instances, and (3) a search
function, that generates a SPARQL query based on the
client’s input data set: origin (query restriction) and target
(query projection) sets. Some scenarios for functions of a
translator are evaluated in the section 5. Finally, we
conclude the paper in section 6.

2. Related Works

Linked Data is a challenging field in which many
authors have attempted to propose many models for
solving problems. There have been studies about Linked
Data, such as database applications for interacting with and
sharing multiple layers of distributed systems that are used
to track human brain waves [5]. This research achieved a
significant accomplishment in real-time forecasting of
human awareness states in real life situations by
combining intelligent sensors.

One of the studies of the hierarchy class issue in an
ontology is a mapping method that connects a set of
concepts such as the name of an entity, its relationships,

etc. [6]. However, this method applies to multiple
ontologies that map together, not to one specific ontology
that has a complex structure of a hierarchy class. Another
result for a specific area that uses ontology construction
and reasoning using Web Ontology Language (OWL) also
had a real experiment and solved a real-world issue [7].

Besides that, the study of automatically generating
query samples based on an ontology structure also
achieved accurate results. However, it was only research
for conversion and integration among ontologies [8]. Other
works can be found [9, 12]. Moreover, research into
extension of the SPARQL Ontology Query Language with
four types (“Adjacent”, “Opposite”, “Vertical” and
“Contain”) only solved the problem of IndoorSPARQL
functions used to support quantitative spatial computations
[10]. In addition, research into using SPARQL to create a
graph from a relational database made a good contribution
to applying information that is stored in a traditional
database into Web Semantic [11].

One research effort into the relationship between
RESTful and SPARQL is useful for generating semantic
sensor data from existing data sources [14]. The authors
just showed how to use a RESTful API to publish sensor
data into a Linked Open Data Cloud. However, they did
not mention SPARQL applications for fully supporting for
ordinary users to easily manipulate semantic data in a
Linked Data server, such as retrieving and searching for
data. The approach proposed in our paper is a useful tool
that helps users automatically translate simple JSON
queries into SPARQL commands. Users only need to
know how to indicate the query’s information sent to the
servers via RESTful technology. The inside process will
handle the complex structure of a graph database and will
generate a SPARQL statement.

Some studies also presented research on RDF. The
authors in [12] revealed some approaches that reverse
some of the complications of adding semantic annotations,
exposing those patterns in the data. A simple model on an
RDF kernel was also presented by Bloem at al. [13]. In
addition, the works in [11] demonstrated a context-aware
approach to keyword query interpretation, which addresses
the novel problem of using a sequence of structured
queries corresponding to interpretations of keyword
queries. Similarly, a considerable number of studies have
been attempted into proposed approaches to RDF query
[15-18].

3. Modeling

This translator is a middle component that provide a
helpful way for simple JSON strings supported by popular
technique (RESTful) to access a complex data structure
supported by a new technology (Linked Data). Generating
a SPARQL statement from a JSON string request inside
the translator is dynamic and seamless to users. It is an
ideal way to help a user can use Linked Data without
knowing about the SPARQL syntax or graph data structure.

In order to build a translator that translates
RESTful/JSON into SPARQL command, we needed to
base it on the structure of metadata in the ontology, which

Nguyen et al.: A Novel Approach for Accessing Semantic Data by Translating RESTful/JSON Commands into SPARQL Messages

224

specifies all of the classes as well as the relationships
among these classes. With this translator component, the
web service can easily interact with an RDF repository.
The translator component has an interface that accepts
client access and sends the request message. After that, our
translator will validate or parse the client request and
generate the SPARQL, connect Linked Data server to
query information, construct the result in a JSON format,
then send the response data to clients. In real world
scenarios, the Linked Data server does respond with the
result directly to clients (As seen in Fig. 1).

The translator is designed based on the ontology
because it provides a specification of a conceptualization.
It describes the concepts as well as the relationships among
them, for an agent.

A consistency ontology will define the vocabulary and
it is used for sharing in a coherent and consistent manner.
In an ontology, we find some main components, as follows.

The definition of the ontology is like a formal
specification of a program. The structure of the ontology is
presented for objects, concepts and other entities that exist
in some area and defines the relationships that hold among
them.

Classes in an ontological structure are understood as a
sets of individuals.

Object properties are connections between pairs of
individuals.

Datatype properties connect individuals with literals.
Individuals represent actual objects from the domain.

3.1 Object Property
Every Object Property (OP) in the ontology is a

mapping from individuals of a Domain Set that contains
one single class to individuals of a Range Set consisting of
multiple classes. Following that, this object is also a
relationship between two individuals that belong to these
two classes.

It is formed in mathematics like this:

 y = f(x)

in that,

f is Object Property
x is a class in the Domain of the OP
y is set of classes in the Range of the OP.

In this case, f the takes a role of a relationship that

connects instances of class x with instances of the set of
classes y.

In an RDF repository, the data are stored in triple
format (subject - predicate - object). When a subject and an
object are two instances that belong to a class in the
Domain and Range of the OP respectively, the OP
becomes the predicate in the triple which connects the
subject and the object. One specific instance of one class
may have a relationship with more than one instances of
different classes with the same OP. To find the relationship
among classes, we need to use the OP as the part that
connects them. Then, we apply these paths to generate
pattern matching in SPARQL to retrieve the data.

There are two specific cases for cardinality of the OP:

Cardinality includes 0.
Cardinality does not include 0 (n>1).

The OP’s cardinality decides the connection between

two instances of two classes that are the part of the Range
and Domain of this Object Property.

If the OP has cardinality that includes 0, the OP’s
Domain will be one where it has unreachability with the
OP’s Range, so the path goes through this OP can be
broken down. In other words, the instance in the Domain
may not connect with any instances in the Range.
Generating the triple pattern with this OP should be
optional, because it has no data matching or we may
receive incorrect data. Using this triple in a SPARQL
statement may cause the empty data result.

For an OP cardinality is 1...n, the OP’s Domain is
always reachable with the OP’s Range, the path goes
through this OP always exists. In this case, we are always
sure that any instance in the Domain connects with at least
one instance in the Range. This kind of OP is always
required in generating the triple when we insert or get data.

3.2 Datatype Property
The Datatype Property (DP) in the ontology creates a

partition for the set of instances that belongs to one class.
In other words, it is considered as the attributes of the class.
Each DP value belongs to one specific primary data type
(DT) such as string, literal, double, etc.

In this case, describing how the data type property
divides the set of instances of the class, may look like a
graph, but the form is similar to a tree. For example, the
DP Gender will divide instances of the Person class into
two subsets: Male and Female (As seen in Fig. 2).

Validation & Parse
Client Request

SPARQL
Generator

JSON Response

Linked Data

Generate JSON
Response

Fig. 1. The architecture of translator.

Fig. 2. The data type property set for Person.

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 3, June 2016

225

3.3 Class Hierarchy
If one class belongs to an OP’s domain (or range), all

its descendants will correspond to the OP’s domain (or
range) due to the inherit relationship.

Let A and B be ancestors in two different hierarchy
classes. If A is connected to B via OP1, then the
inheritance of OP1 cannot be applied to a descendant of A
when this already has another OP that connects to a
descendant of B.

e.g. B = OP1 (A)
 B1 = OP2 (A1) (A1 is a subclass of A, B1 a subclass

of B)
OP2 can be replaced by OP1.
We assume that all the ancestors of the leaves in any

class hierarchy are abstract classes, i.e., they do not have
instances. Only the classes of the last level have instances
(“concrete classes”). Therefore, Data Type properties will
only partition the classes in the last level of a class
hierarchy.

3.4 SPARQL Statement
A SPARQL statement, a special kind of query

language, needs to be constructed to query the Linked Data
in the server.

In order to design the triple pattern for querying the

data based on the relationships among classes and
relationships between them theirs DTs which are given in
request’s body. The SPARQL statement has a set of triples
that follows a structure like this:

SELECT: ?s1, … ?si, … ?sI
WHERE
{
 [t1 . … tk . … tK]
 FILTER(?w1 == “v1”)
 FILTER(?wl == “vl”)
 …
 FILTER(?wL == “vL”)
}

In the SELECT statement, each projection

variable ?si belongs to a set of projection variables
(“S”). Moreover, it corresponds to a pair of triples in the
output SPARQL query body with the following structure:

?<individualOfAclass> a : Cj
 ?<individualOfAclass> : <DataTypeProperty j> ?si

where: Cj is a class (or concept) of the ontology, and
<DataTypeProperty j> is a DP of the ontology that
connects Cj with ?si.

The WHERE statement, it consists of two parts: a set
of triples that describes the relationships among the classes
and these classes with theirs data type properties, while
other part is the filter statement that describes the
comparison with specific value to select the appropriate
instances.

With WHERE { [t1 . … tk . … tK] }

every tk is a triple that represents a step in the possible

shortest path that connects any distinguishable pair of
classes in the SPARQL query body. It has the structure (x,
p, y) where x and y are names of SPARQL variables that
correspond to individuals of any class that belongs to
ontological structure. This means that x and y could
represent individuals of a class that belongs to set of
connected classes. In addition, p is an OP of the ontology
that connects x and y.

Each tk has a representation that corresponds to the
following SPARQL triples:

?x a :<Class of the individual x>
?y a :<Class of the individual y>
?x :p ?y

In addition, it corresponds to a step in a shortest path

from Cm to Cn, where Cm and Cn belong to a set of
classes to connect. In some cases, tk could be an
“OPTIONAL” triple due to the cardinality of the OP.

In the WHERE/Filter clause, each restriction
variable ?wl belongs to a set of restriction variables
(“W”). In additional, it corresponds to three triples in the
output SPARQL query body with the following structure:

 ?<individualOfAclass> a :Cl .
 ?<individualOfAclass> :<DataTypePropertyl> ?wl .
 FILTER(?wl == “vl”),

where Cl is a class (or concept) of the ontology, and
<DataTypeProperty l> is a DT of the ontology that
connects Cl with ?wl .

3.5 Solve with Hierarchy Class
With the hierarchy class in the ontology, the ancestors

(called abstract classes) have no individuals directly. All of
the individuals are in the concrete classes. To make
SPARQL statements related to hierarchy classes, we
should move all of the abstract classes, because those
statements are generated based on the variable that
represented individuals; but an abstract class does not have
any individual. However, to guarantee the relationship of
classes in the hierarchy classes, we need to move down all
of the relationships to the concrete classes. In order to do
that, we have two situations, as follows

- The relationship between hierarchy classes with a

Fig. 3. The grammar tree of SPARQL.

Nguyen et al.: A Novel Approach for Accessing Semantic Data by Translating RESTful/JSON Commands into SPARQL Messages

226

single class. In this case, the concrete classes will
inherit all relationships with that single class. Then,
we move all the ancestor classes to make sure that
generating a SPARQL statement just covers the
classes that have individuals.

- The relationship between hierarchy classes with a
hierarchy class. In this case, we allow the concrete
classes in both hierarchy classes to inherit all of the
relationships from their ancestors. The relationship
between two concrete classes are set of relationships
among their ancestors.

4. Generating SPARQL based on an
Ontology Structure

Retrieving information must be based on all concepts
(classes, OP, DP and cardinality) in the ontology, because
this process has to be done by the SPARQL statement,
which was built dynamically on the ontology. In order to
do that, we need to follow all relationships among these
given classes, and then find the instances of target classes
that can connect with the given classes well. Then, we may
have the path from any pair of classes (one in the given
class, the other in the target classes. We can use given
values in the user request to filter these instances.
Generating the triple pattern follows the relationships
among classes and DTs of each class. There are two kinds
of triples that are generated from the request’s parameters.
One kind of triples aims to define the relationship among
all of the instances via OPs which belong the classes in the
ontological structure.

To indicate a relationship among classes, we use a
shortest-path algorithm to find the path between the origin
class and the target class. The others are used to define the
relationships between these instances with their DTs.

They have some functions that were built in this
translator, such as: optimal search, retrieve instance or
insert new instance for one specific class. Remarkably, the
search is a complex operator of the translator. It was
designed as seen below:

T := Ø;
P findDistinguishPairsOfClass(); //one is
origin class and the other is target class
For (pair p : P)
fromClass p.getX();
toClass etY();
path findShortestPaths(fromClass, toClass);
T T U generateTriplesFromPath(path);
T’ := Ø;
For (triple t : T)
Boolean op isTripleOptional(t);
If (op) Then
 T’ T’ U { OPTIONAL(t) }
Else
 T’ T’ U { t }

5. Examples

To read the structure of the ontology, we use the Jena
API, an open source Semantic Web framework for Java.
This API extracts data and writes to RDF graphs. In
addition, we also use Neo4j, a kind of graph database for
handling the graph of the ontology (as seen in Fig. 4).

The semantics of the Input structure
This is an HTTP request message. There are two kinds

of methods: GET and POST.
- GET is used query the data of the class(es) in

database.
- POST is used to insert new instances for a specific

class in the database.
The URI of this kind of request is an HTTP schemed

URI with the following components:
http://<entry-point >/<operation>? <Query String>

The semantics of the Output structure
The output is the result of one or more processes on the

server side after the server handles the request from the
client. Based on the request, the server will use the
appropriate functions to generate the answer and respond
to the client. Functions in the server are applied algorithms,
as well as interactions with other servers or the cloud to
find the best answer for the client.

The output is constructed in JSON format. Then, the

client parses this response for the representation data.
The response process is also based on RESTful

technology, because the result can be stored in a cache so
it can be reused for a subsequence, similar request. This is
helpful in reducing congestion in the network.

In a graph store (e.g. Virtuoso server), there is support
for two categories: graph update and graph management.

- Graph update is used to add or remove triples of one
graph in the graph store. This kind of operation just
changes data of the existing graph with some statements,
such as insert, delete, insert data, delete data, modify, load
and clear. Delete and insert operations are specific cases of
a modify operation that consists of a group of triples to be
deleted and a group of triples to be added. These triples are
constructed via query pattern. However, there is a
difference between the “insert data/delete data” and
“insert/delete” in that insert data and delete data do not
take a template and pattern. The load operation uses to

Fig. 4. Application model.

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 3, June 2016

227

reads the contents of an ontology representing a graph into
a graph in the graph store whereas clear operation removes
all the triples of a graph.

Graph management is used to create or delete a graph
in the graph store. There are two kinds of statement: create
and drop. Creating graph will create a new graph with a
name specified by the URI whereas the drop operation
removes the specified named graph from the graph store.

- The structure of a class hierarchy a complex step that
needs to be handled. The problem is how to make a
recursive process to “move down” all relationships from
ancestors to descendants when that hierarchy class belongs
to Domain or Range. There have three cases, as follows.

The Domain and the Range of the relationship are two
classes that are ancestors belonging to two different
hierarchy classes. In this case, we look down one level
from these classes. All of the “next level” classes in the
Domain will connect with all of the “next level” classes in
the Range with the same Object Properties as their
ancestors. From that, these “next level” classes have a set
of Object Properties that is the sum of inherited the Object
Properties and object properties of itself. This makes the
process a loop until the Domain and the Range of the
relationship is between all classes of the last level of these
initial classes.

The Domain of the relationship is an ancestor class of
a class hierarchy and the Range is a single class. In this
case, we allow all of the “next level” classes to inherit all
of Object Properties from the Domain class while the
single class in the Range is still stable. Doing this step is a
recursive method until the relationship is between classes
of last level in hierarchy class and single class.

The Domain of the relationship is a single class, while
the Range is one of the ancestors in a hierarchy class. In
this case, we allow the single class in the Domain have
relationship with all “next level” classes of current class in
the Range. Repeat this step until the relationship connects
between single classes with concrete classes in the class
hierarchy.

For any Object Property that is related to a hierarchy
class, we preprocess it to make sure that the Object
Property just connects two concreate classes which that
have instances (or data) directly.

5.1 Scenario 1: Search with Multiple
Classes without Hierarchy Class

With the ontological structure of the the Brain
Computer Interface (BCI) ontology, we have a Subject
class, which has a set of instances; each instance is a
person who takes part in collecting the EegBciRecord. So,
the Subject class has a relationship “has Data Set” with the
EegBciRecord class. Similarly, each instance of
EegBciDevice is a certain device that is used to make an
EegBciRecord. Each instance of the EegBciRecord has a
specific channel that describes the structure of the record.
EegBciRecord has the relationship “hasEegChannel” with
EegChannel. Assume that the client will send a request to
ask about the identification (ID) of all the instances of
EegChannel. These records were of young males whose
year of birth is 1989 and they were collected by a certain

device which has organization name NCTU. The position
of the device a distance from the center towards the right
by about 3.5 millimeters (see Fig. 5).

The SPARQL statement is generated automatically as
follows:

SELECT ?EegChannel_id
WHERE
 {

?Subject_id a bci:Subject .
?Subject_id bci:hasYearOfBirth ?Subject_hasYearOfBirth .
?Subject_id bci:hasGender ?Subject_hasGender .
?EegBciRecord_id a bci:EegBciRecord .
?Subject_id bci:hasDataSet ? EegBciRecord_id.
?EegChannel_id a bci: EegChannel.
?EegBciRecord_id bci:hasEegChannel ?EegChannel.
?EegBciDevice_id a: EegBciDevice
?EegBciDevice_id

bci:hasOrganizationName ?EegBciDevice_hasOrganizationName .
?EegBciDevice_id

bci:isUsedForGenerateEegBciRecord ?EegBciRecord_id.
?EegBciRecord_id a bci:EegBciRecord .
?EegBciRecord_id

bci:hasEegChannelData ?EegChannel_id .
?EegChannel_id a: ?EegChannel.
FILTER (?Subject_hasGender= "Male")

FILTER (?Subject_hasYearOfBirth= "1989")
FILTER (?EegBciDevice_id hasOrganizationName= "NCTU") .

 }

5.2 Scenario 2: Search with Multiple
Classes with Hierarchy Class

With the above example in Scenario 1, there have
many types of record such as EegBciRecord, Eye
GazeBciRecord, and MouseClickBciRecord. All of them
belong to BciRecord. So, we have an abstract class of
BciRecord and three concrete classes (EegBciRecord,
EyeGazeBciRecord, and MouseClickBciRecord). Similarly,
for each type of record, we also have a specific type of
device that is used to collect a specific record that
corresponds. There are three types of device such as
EegBciDevice, EyeGazeBciDevice and MouseClickBci
Device. All of the devices belong to BciDevice, a abstract
class, that does not have instances directly (see Fig. 6)

In this case, we allow all the children of BciRecord to
inherit all relationships with Subject. It means that Subject

Fig. 5. A part of data structure of BCI ontology.

Nguyen et al.: A Novel Approach for Accessing Semantic Data by Translating RESTful/JSON Commands into SPARQL Messages

228

will have a relationship with EyeGazeBciRecord,
EegBciRecord and MouseClickBciRecord with same
relationship as BciRecord.

The SPARQL statement is generated similar to the
above SPARQL and this statement does not contain any
abstract classes such as BciRecord or BciDevice.

5.3 Scenario 3: Insert New Instances for
One Class

Following the ontology structure, we organize and
store the data in the server (VUS) in the triple format
(subject – predicate - object). In that data, the subject is the
instance of one specific class in the ontology. The object
can be instances of other classes that have the relationship
with the subject or a DT (attribute) of this subject.
Predicate is a relationship between subjects and objects
corresponding with the OP between those two classes. To
insert a new instance of the class in the ontology, we need
to insert all of the triples for the relationship of this
instance with the other instances in another class or the
data type properties of itself.

To design the triple pattern for inserting a new instance,
we need to follow the metadata structure. The relationship
between one instance in one specific class and other
instances in another class is expressed by the OP. Besides
that, there has a set of triples that describes pattern
matching for this instance with its attributes. This kind of
pattern is based on the DP of the class that the new
instance must belong to. However, some DTs are optional,
and we do not need to insert all of them, or require clients
to send parameters.

5.4 Scenario 4: Retrieve Instances of One
Class

In the query operation, we find all the instances of one
specific class that satisfy the given values of the DTs.
However, any class in the ontology has a lot of DTs and
some of them are required. We cannot make each query
pattern for every specific class to retrieve the instances,
especially when we have a new concept. It is difficult to
define a new query pattern for new concepts because we
need to be concerned with the structure.

Like the insert operation, we need to base it on the DTs
of one specific class to define the set of triples that can be
used to query all instances that belong to this class. From
the required values and provided values, we try to
incorporate them into the pattern matching to query the
database as well as filter out suitable instances that satisfy
the request.

6. Conclusion

In this paper, we presented translation that solved the
problem of mismatches between two languages
(RESTful/JSON and SPARQL) that are supported by two
powerful technologies (web services and Linked Data,
respectively). With this translation, clients can work with
Linked Data easily. In addition, there are still no barriers to
limit communication. This translator component also
applies a graph database with an algorithm to solve the
problem of the shortest path between any two nodes that
correspond to any two classes in the ontology. Using the
graph to handle the metadata structure is the best way to
find the exact triple patterns that keep the classes
connected as well as the data of these classes. Based on
that, we can find the data effectively. Besides that, the
translator component offers four main functions: 1) query
specific class instances, 2) get values of data type
properties, 3) insert new class instances and 4)search
(multiple classes). Finally, the translator component can
work with any ontological structure and query/search data
in different resources with a federated query scheme.

References

[1] Christian Bizer, Tom Heath and Tim Berners-Lee,

"Linked Data - The Story So Far," International
Journal on Semantic Web and Information Systems,
2009. Article (CrossRef Link)

[2] Bastian Quilitz, Ulf Leser, "Querying distributed
RDF data sources with SPARQL," in ESWC'08
Proceedings of the 5th European semantic web
conference on The semantic web: research and
applications, 2008. Article (CrossRef Link)

[3] Jorge P´erez, Marcelo Arenas, and Claudio Gutierrez,
"Semantics of SPARQL" in Semantic Web
Information. Article (CrossRef Link)

[4] Roy T. Fielding, Richard N. Taylor, "Principled
design of the modern Web architecture," ACM
Transactions on Internet Technology, 2002. Article
(CrossRef Link)

[5] John K. Zao, Tchin-Tze Gan, Chun-Kai You, Cheng-
En Chung, Yu-Te Wang, Sergio José Rodríguez
Méndez, Tim Mullen, "Pervasive brain monitoring
and data sharing based on multi-tier distributed
computing and linked data technology," Frontiers in
Human Neuroscience, 2014. Article (CrossRef Link)

[6] Ying Wang, Weiru Liu, and David Bell ,“A Concept
Hierarchy based Ontology Mapping Approach”
School of Electronics, Electrical Engineering and
Computer Science, Queen’s University Belfast,

Subject

Male YOB

Male � YOB Female � YOB …..

Female

EegChannel

X: 1000 …Y =
20.0

EegBciDevice

NCTU Foam …Plastic

BciDevice

EegBciDeviceEegBciDevice

BciSession

LabId =10 … LabId = 20

1..*

0..*

0..*

1..*

0..* 1..*

EegBciRecord

NumChan
=10 Type

String
…

1..*
MouseClickBciRecord EgeGazeBciRecord

BciRecord

0..*

Fig. 6. A part of the data structure of BCI ontology with
a hierarchy class.

http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
https://www.informatik.hu-berlin.de/de/forschung/gebiete/ki/wbi/research/publications/2008/DARQ-FINAL.pdf
http://users.dcc.uchile.cl/~cgutierr/ftp/sparql_semantics.pdf
https://www.ics.uci.edu/~fielding/pubs/webarch_icse2000.pdf
https://www.ics.uci.edu/~fielding/pubs/webarch_icse2000.pdf
http://www.ncbi.nlm.nih.gov/pubmed/24917804

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 3, June 2016

229

Belfast, BT7 1NN, UK, 2013. Article (CrossRef
Link)

[7] Vinu, Sherimon and Reshmy Krishnan, “ontology
construction and reasoning using owl: a case study
from seafood domain”, SENRA Academic Publishers,
British Columbia Vol. 8, No. 2, pp. 2979-2984, June
2014 Online ISSN: 1920-3853; Print ISSN: 1715-
9997. Article (CrossRef Link)

[8] Carlos R. Rivero, Inma Hernández, David Ruiz, and
Rafael. University of Sevilla, Spain, "Generating
SPARQL Executable Mappings to Integrate
Ontologies," in Proceeding ER'11 Proceedings of the
30th international conference on Conceptual
modeling, 2011. Article (CrossRef Link)

[9] Tuan-Dat Trinh, Ba-Lam Do, Peter Wetz, Amin
Anjomshoaa, Elmar Kiesling and Amin Tjoa, "A
Drag-and-block Approach for Linked Open Data
Exploration" in ISWC 2014, 2014. Article (CrossRef
Link)

[10] Can Li , Xinyan Zhu , Wei Guo , Yi Liu , Liang
Huang, “Research on Extension of SPARQL
Ontology Query Language Considering the
Computation of Indoor Spatial Relations”, The
International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences,
Volume XL-4/W5, 2015 Indoor-Outdoor Seamless
Modelling, Mapping and Navigation, 21–22 May
2015, Tokyo, Japan. Article (CrossRef Link)

[11] Ayoub Oudani, Mohamed Bahaj, Ilias Cherti.
“Creating an RDF Graph from a Relational
Database Using SPARQL”, Manuscript submitted
May 11, 2014; accepted October 20, doi:
10.17706/jsw.10.4.384-391. Article (CrossRef Link)

[12] Ilaria Tiddi, Mathieu D'Aquin and Enrico Motta,
"Walking Linked Data: A graph traversal approach to
explain clusters" in ISWC 2014, 2014. Article
(CrossRef Link)

[13] Peter Bloem, Adianto Wibisono, Gerben De Vries,
"Simplifying RDF Data for Graph-Based Machine
Learning" in 11th ESWC 2014, 2014. Article
(CrossRef Link)

[14] Heiko Müller, Liliana Cabral, Ahsan Morshed, and
Yanfeng Shu “From RESTful to SPARQL: A Case
Study on Generating Semantic Sensor Data”, The
12th International Semantic Web Conference
(ISWC2013). Article (CrossRef Link)

[15] Vries, G.K.D., de Rooij, S.d’Amato, C., Berka, P.,
Sv´atek, V., Wecel, K., eds., "A fast and simple graph
kernel for RDF" in EUR Workshop Proceedings.,
CEUR-WS.org (2013), 2013. Article (CrossRef Link)

[16] Haizhou Fu and Kemafor Anyanwu, "Effectively
Interpreting Keyword Queries on RDF Databases
with a Rear View" in ISWC 2011, 2011. Article
(CrossRef Link)

[17] Carlos Viegas Damasio and Filipe Ferreira, "Practical
RDF Schema reasoning with annotated Semantic
Web data," in The ISWC 2011, 2011. Article
(CrossRef Link)

[18] Gregory Todd Williams and Jesse Weaver, "Enabling

fine-grained HTTP caching of SPARQL query
results", in The ISWC 2011, 2011. Article (CrossRef
Link)

[19] Roi Blanco, Peter Mika and Sebastiano Vigna,
"Effective and Efficient Entity Search in RDF data",
in The ISWC 2011, 2011. Article (CrossRef Link)

[20] Mohamed Morsey, Jens Lehmann, Sören Auer and
Axel-Cyrille Ngonga Ngomo, "DBpedia SPARQL
Benchmark Performance Assessment with Real
Queries on Real Data" in The ISWC 2011, 2011.
Article (CrossRef Link)

Khiem Minh Nguyen has been a
lecturer at Can Tho University since
November, 2011. He obtained his B.S
degree in Information System from
Can Tho University (CTU), Vietnam
in 2011 and his M.S degree in
Computer Science from National
Chiao Tung University (NCTU),

Taiwan in 2015. At the present, he researches as a PhD
student in Bournemouth University (BU), United Kingdom.
He is interested in Database Management Systems, Linked
Data, Social Networks and 3D Animation. Besides that, he
also participates in some fields such as Cloud Computing,
Artificial intelligence and Mobile Application.

Hai Thanh Nguyen has been a
lecturer at Can Tho University since
April, 2009. He received his B.S
degree in Informatics from Can Tho
University (CTU), Vietnam and his
M.S in Computer Science and
Engineering from National Chiao Tung
University (NCTU), Taiwan in 2009

and 2014, respectively. At the present, he is a PhD student
in Computer Science of Pierre and Marie Curie University
(UPMC), Paris, France. He has been very excited by Deep
Learning, Bioinformatics and Social Networks. Another
field which he is also very interested is Simulation-based
Data Mining. Simulation-based Data Mining Solutions are
applying to agriculture in Vietnam. Besides Data Mining,
he also works on Cloud Computing, Mobile Data
Management and Artificial intelligence.

Hiep Xuan Huynh is an associate
professor in computer science (infor-
matics) at College of Information and
Communication Technology, Cantho
University, Vietnam. He obtained his
Ph.D degrees in informatics from
Polytechnics School of Nantes Univer-
sity in 2006. His research interests are

IoT, interestingness measures in data mining, deep
learning, cellular automata, modeling decisions and
recommender system. Contact him at hxhiep@ctu.edu.vn

Copyrights © 2016 The Institute of Electronics and Information Engineers

http://disi.unitn.it/~p2p/RelatedWork/Matching/Wang_KSEM10Onto.pdf
http://disi.unitn.it/~p2p/RelatedWork/Matching/Wang_KSEM10Onto.pdf
http://www.cjpas.net/wp-content/uploads/pdfs/8/2/Paper (18).pdf
http://link.springer.com/chapter/10.1007%2F978-3-642-24606-7_10
http://publik.tuwien.ac.at/files/PubDat_235020.pdf
http://publik.tuwien.ac.at/files/PubDat_235020.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-4-W5/67/2015/isprsarchives-XL-4-W5-67-2015.pdf
http://www.jsoftware.us/vol10/32-jsw140511-1256.pdf
http://ceur-ws.org/Vol-1264/cold2014_TiddiDM.pdf
http://ceur-ws.org/Vol-1264/cold2014_TiddiDM.pdf
http://ceur-ws.org/Vol-1243/paper1.pdf
http://ceur-ws.org/Vol-1243/paper1.pdf
http://ceur-ws.org/Vol-1063/paper4.pdf
http://ceur-ws.org/Vol-1082/paper2.pdf
http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/Research_Paper/01/70310192.pdf
http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/Research_Paper/01/70310192.pdf
http://link.springer.com/chapter/10.1007/978-3-642-25073-6_47#page-1
http://link.springer.com/chapter/10.1007/978-3-642-25073-6_47#page-1
https://tw.rpi.edu/web/doc/sparql-http-caching
https://tw.rpi.edu/web/doc/sparql-http-caching
http://livingknowledge.europarchive.org/images/publications/BlancoISWC2011.pdf
http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/Research_Paper/03/70310448.pdf
mailto:hxhiep@ctu.edu.vn

