DOI QR코드

DOI QR Code

Secretion of Ferritin Protein of Periserrula leucophyryna in Bacillus subtilis and Its Feed Efficiency

고초균에서 흰이빨참갯지렁이 페리틴 단백질의 분비 및 사료 효율성

  • 최장원 (대구대학교 생명환경대학 바이오산업학과)
  • Received : 2016.04.11
  • Accepted : 2016.04.28
  • Published : 2016.06.30

Abstract

Ferritin is known to regulate iron metabolism and maintain iron in a variety of the eukaryotic organisms. The region encoding the mature ferritin (0.47 kb, H-type) of Periserrula leucophryna was amplified using the designed primers including restriction enzyme site and termination codon and subcloned in frame to the pRBAS secretion vector containing the signal sequence, RBS, and promoter of amylase gene (E. coli-Bacillus shuttle vector), resulting in recombinant pRBAS-PLF vector. Recombinant ferritin (18 kDa) was correctly processed and secreted from Bacillus subtilis LKS strain harboring the pRBAS-PLF vector and quantitatively analyzed by SDS-PAGE and western blot, respectively. Secretion of the ferritin was optimized by culture conditions (host, medium, temperature, nitrogen source) in 3 L batch culture and 5 L jar fermenter. Finally. the ferritin was largely produced using 50 L fermenter as the following conditions; at $30^{\circ}C$, 150 rpm, 1 vvm in Bacillus subtilis LKS using PY medium. The secreted ferritin was maximally measured (approximately 177.6 ug/ml) when the cell density reached to 14.4 at $OD_{600}$ (20 h incubation). The iron binding activity was confirmed by Perls' staining in 7.5% non-denaturing gel, indicating that the multimeric ferritin (composed of 24 subunits) was formed in the culture broth after secretion. Biologically, the culture broth and powder type containing ferritin were tested for possibility as feed additive in chicken broiler. As a result, the ferritin stimulated the growth of chick broil and improved feed efficiency and production index.

Keywords

References

  1. Andrew, S. C., P. Arosio, W. Bottke, J. F. Briat, M. von Darl, P. M. Harrison, J. P. Laulhere, S. Levi, S. Lobreaux, and S. J. Yewdall (1992) Structure, function, and evolution of ferritins. J. Inorg. Biochem. 47: 161-174. https://doi.org/10.1016/0162-0134(92)84062-R
  2. Theil, E. C. (1987) Ferritin: structure, gene, regulation, and cellular function in animals, plants, and microorganisms. Ann. Rev. Biochem. 56: 289-315. https://doi.org/10.1146/annurev.bi.56.070187.001445
  3. Harrison, P. M. and P. Arosio (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275: 161-203. https://doi.org/10.1016/0005-2728(96)00022-9
  4. Baynes, R. D. and T. H. Bothwell (1990) Iron deficiency. Ann. Rev. Nutr. 10: 133-148. https://doi.org/10.1146/annurev.nu.10.070190.001025
  5. Theil, E. C. (1990) Regulation of ferritin and transferrin receptor mRNAs. J. Biol. Chem. 265: 4771-4774.
  6. Lawson, D. M., A. Treffry, P. J. Artymiuk, P. M. Harrison, S. J. Yewdall, A. Luzzago, G. Cesareni, S. Levi, and P. Arosio (1989) Identification of the ferroxidase centre in ferritin. FEBS Lett. 254: 207-210. https://doi.org/10.1016/0014-5793(89)81040-3
  7. Stefanini, S., E. Chiancone, P. Arosio, A. Finazzi-Agro, and E. Antonini (1982) Structural heterogeneity and subunit composition of horse ferritins. Biochem. 21: 2293-2299. https://doi.org/10.1021/bi00539a004
  8. Park, H. K., Y. S. Huh, J. W. Lee, and I. H. Kim (2002) Purification of Heavy Chain Ferritin (FH) from Recombinant E. coli. Kor. J. Biotechnol. Bioeng. 17: 44-451.
  9. Lee, J., S. W. Kim, Y. H. Kim, and J. Y. Ahn (2002) Active human ferritin H/L-hybrid and sequence effect on folding efficiency in Escherichia coli. Biochem. Biophys. Res. Commun. 298: 225-229. https://doi.org/10.1016/S0006-291X(02)02429-4
  10. Chang, Y. J., C. U. Park, and K. S. Kim (2004) Iron uptake by the recombinant yeasts producing ferritin heteropolymers. Kor. J. Biotechnol. Bioeng. 19: 352-357.
  11. Lee, J. L., R. E. Levin, and H. Y. Kim (2008) Improved coexpression and multiassembly properties of recombinant human ferritins subunit in Escherichia coli. J. Microbiol. Biotechnol. 18: 926-932.
  12. Seo, H. Y., Y. J. Chung, S. J. Kim, C. U. Park, and K. S. Kim (2003) Enhanced expression and functional characterization of the human ferritin H- and L-chain genes in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 63: 57-63. https://doi.org/10.1007/s00253-003-1350-3
  13. Brands, S. J. (comp.) (1989-2002) Systema Naturae 2000. Amsterdam, The Netherlands. [http://sn2000.taxonomy.nl/]
  14. Jeong, B. R., S. M. Chung, N. J. Baek, K. B. Koo, H. S. Baik, H. S. Joo, C. S. Chang, and J. W. Choi (2006) Characterization, cloning, and expression of the ferritin gene from the Korean polychaete, Periserrula leucophryna. J. Microbiol. 44: 54-63.
  15. Kim, S. I., J. W. Choi, and S. Y. Lee (1997) Effects of pleiotrophic mutations, degUh and spoOA, on the production of foreign proteins using the heterologous secretion system of Bacillus subtilis. Mol. Cells. 7: 158-164.
  16. Joo, H. S. and J. W. Choi (2011) Cloning and expression of a alkaline protease from Bacillus clausii I-52. J. Agri. Life Sci. 45: 201-212
  17. Shi, X. L., M. Q. Feng, Y. J. Zhao, X. Guo, and P. Zhou (2008) Overexpression, purification and characterization of a recombinant secretary catalase from Bacillus subtilis. Biotechnol. Lett. 30: 181-186.
  18. Sambrook, J., E. F. Fritsch, and T. Maniatis (1989) In Molecular cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press.
  19. Lee, M. H., J. J. Song, Y. H. Choi, S. P. Hong, E. H. Rha, K. Kim, S. G. Lee, S. C. Lee, H. Poo, Y. B. Seu, and M. H. Sung (2003) High-level expression and secretion of Bacillus pumilus lipase B26 in Bacillus subtilis chungkookjang. J. Microbiol. Biotechnol. 13: 892-896.
  20. Sadaie, Y. and T. Kada (1983) Formation of competent Bacillus subtilis cells. J. Bacteriol. 153: 813-821.
  21. Park, I. S. and B. G. Kim (2001) Media optimization and comparison of fermentation type for overproduction of staphylokinase in Bacillus subtilis WB700. Kor. J. Biotechnol. Bioeng. 16: 415-419.
  22. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  23. Bradford, M. M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  24. Perls, M. (1867) Nachweis von eisenoxyd in gweissen pigmenten. Virchows Arch. 39: 42-48. https://doi.org/10.1007/BF01878983
  25. Roschzttardtz, H., G. Conejero, C. Curie, and S. Mari (2009) Identification of the endodermal vacuole as the iron storage compartment in the Arabidopsis embryo. Plant Physiol. 151:1329-1338. https://doi.org/10.1104/pp.109.144444
  26. Seo, H. Y., Y. J. Chung, S. J. Kim, C. U. Park, and K. S. Kim (2003) Enhanced expression and functional characterization of the human ferritin H- and L-chain genes in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 63: 57-63. https://doi.org/10.1007/s00253-003-1350-3
  27. Owens, F. N., D. S. Secrist, W. J. Hill, and D. R. Gill (1997) The effect of grain source and grain processing on performance of feedlot cattle: a review. J. Anim. Sci. 75: 868-879. https://doi.org/10.2527/1997.753868x
  28. Massover, W. H. and J. M. Cowley (1973) The ultrastructure of ferritin macromolecules, The lattice structure of the core crystallites. Proc. Natl. Acad. Sci. USA 70: 3847-3851. https://doi.org/10.1073/pnas.70.12.3847
  29. Banyard, S. H., D. K. Stammers, and P. M. Harrison (1980) Electron density map of apoferritin at 2.8-A resolution. Nature 288: 298-300. https://doi.org/10.1038/288298a0
  30. Yang, C. Y., A. Meagher, B. H. Huynh, D. E. Sayers, and E. C. Theil (1986) Iron(III) clusters bound to horse spleen apoferritin: An X-ray absorption and Mossbauer spectroscopy study that shows that iron nuclei can form on the protein. Biochem. 26: 497-503.
  31. Sarvas, M., C. R. Harwood, S. Bron, and J. M. van Dijl (2004) Posttranslocational folding of secretory proteins in gram positive bacteria. Biochim. Biophys. Acta. 1694: 311-327.
  32. Schallmey, M., A. Singh, and O. P. Ward (2004) Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17. https://doi.org/10.1139/w03-076

Cited by

  1. 큰느타리버섯에서 석충 페리틴 단백질 유전자의 발현 최적화 및 생물학적 활성 vol.47, pp.4, 2019, https://doi.org/10.4489/kjm.20190041