DOI QR코드

DOI QR Code

Formation Mechanism of Aroma Compound during Tea Manufacturing Process

차 향기의 생성 메커니즘

  • Cho, MiJa (Institute of lnternational Tea Culture & lndustry, Mokpo National University) ;
  • Cho, Gijeong (Institute of lnternational Tea Culture & lndustry, Mokpo National University) ;
  • Choi, HyunSook (Department of Food Nutrition and Food Service, Chungcheong University) ;
  • Choi, Dubok (Biotechnology Lab., R&D Center, BK Company Ltd.) ;
  • Cho, KiAn (Department of Medical Management, Chodang University) ;
  • Cho, Hoon (Department of Biochemical Polymer Science & Engineering, Chosun University)
  • 조미자 (목포대학교 대학원 국제차문화학과 국제차문화산업 연구소) ;
  • 조기정 (목포대학교 대학원 국제차문화학과 국제차문화산업 연구소) ;
  • 최현숙 (충청대학교 식품영양외식학부) ;
  • 최두복 (바스프 코리아 연구소) ;
  • 조기안 (초당대학교 의약관리학과) ;
  • 조훈 (조선대학교 생명화학고분자공학과)
  • Received : 2016.04.01
  • Accepted : 2016.06.22
  • Published : 2016.06.30

Abstract

Tea is an aqueous infusion of dried leaves of the plant Camellia sinensis L. and is the second most widely consumed beverage around the world after water. Aroma compounds of tea differ largely depending on the manufacturing process, even from the same categories of different origins. The flavor of tea can be divided into two categories: taste (non-volatile compounds) and aroma (volatile compounds). In the present study, we review the formation mechanism of main aromas generated from carotenoids, lipids, glycosides as precursors, and Maillard reaction during the tea manufacturing process, with biological and chemical mechanisms.

Keywords

References

  1. Graham, P. J (1998) Tea of the Sages: the Art of Sencha, University of Hawaii Press, Honolulu. USA. pp. 33-39.
  2. Li, S., C. Y. Lo, M. H. Pan, C. S. Lai, and C. T. Ho (2013) Black tea: chemical analysis and stability. Food Func. 4: 4-10.
  3. Pan, M. H., C. S. Lai, H. Wang, C. Y. Lo, C. T. Ho, and S. L. Lai (2013) Black tea in chemoprevention of cancer and other human diseases. Food Sci. 2: 12-31.
  4. Constantinides, S. M., R. Hoover, and P. A. Karakoltsidis (1995) Tea. Food. Rev. Int. 11: 371-542. https://doi.org/10.1080/87559129509541049
  5. Robinson, J. M. and P. O. Owuor (1992) Tea, in: K. C. Wilson, M. N. Clifford (Eds.) Tea: Cultivation to Consumption, Chapman & Hall, London, UK. pp. 603-647.
  6. Winterhalter, P (2000) Carotenoid-derived aroma compounds. An overview. In: Abstracts of paper of the American Chemical Society, NY, USA. pp. U25-26.
  7. Sanderson, G. W. and H. N. Grahamm (1973) Formation of black tea aroma. J. Agric. Food Chem. 21: 576-585. https://doi.org/10.1021/jf60188a007
  8. Roberts, D. D., A. P. Mordehai, and T. E. Acree (1994) Detection and partial characterization of eight beta-damascenone precursors in apples. J. Agric. Food Chem. 42: 345-349. https://doi.org/10.1021/jf00038a021
  9. Huang, F. C., G. Horvath, P. Molnar, E. Turcsi, J. Deli, J. Schrader, G. Sandmann, H. Schmidt, and W. Schwab (2009) Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascene. Phytochemistry 70: 457-464. https://doi.org/10.1016/j.phytochem.2009.01.020
  10. Kanasawud, P. and J.C. Crouzet (1990) Mechanism of formation of volatile compounds by thermal degradation of carotenoids in aqueous medium. J. Agric. Food Chem. 38: 237-243.
  11. Baldermann, S., M. Kato, and M. Kurosawa (2010) Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour. J. Exp. Bot. 61: 2967- 2977. https://doi.org/10.1093/jxb/erq123
  12. Kawakami, M. and A. Kobayashi (2000) Carotenoid-derived aroma compounds in tea. In: Abstracts of paper of the American Chemical Society, NY, USA. pp. U32-33.
  13. Coggon, P., L. J. Romanczyk, and G.W. Sanderson (1977) Extraction, purification, and partial characterization of a tea metalloprotein and its role in the formation of black tea aroma constituents. J. Agric. Food Chem. 25: 278-283. https://doi.org/10.1021/jf60210a039
  14. Takeo. T. and T. Tsushida (1980) Changes in lipoxygenase activity in relation lipid degradation in plucked tea shoots. Phytochemistry 19: 2521-2522. https://doi.org/10.1016/S0031-9422(00)83910-2
  15. Hatanaka, A., T. Kajiwara, and K. Matsui (1995) The biogeneration of green odor by green leaves and its physiological functions. J. Nature Res. 50: 467-472.
  16. Yang, Z., S. Baldermann, and N. Watanabe (2013) Recent studies of the volatile compounds in tea. Food Res. Int. 53: 585-599. https://doi.org/10.1016/j.foodres.2013.02.011
  17. Cheng, Y., T. Huynh-Ba, I. Blank, and F. Robert (2008) Temporal changes in aroma release of Longjing tea infusion: interaction of volatile and nonvolatile tea components and formation of 2-butyl-2-octenal upon aging. J. Agric. Food Chem. 56: 2160-2169. https://doi.org/10.1021/jf073132l
  18. Mosblech, A., I. Feussner, and I. Heilmann (2009) Oxylipins: Structurally diverse metabolites from fatty acid oxidation. Plant Physiol. Biochem. 47: 511-517. https://doi.org/10.1016/j.plaphy.2008.12.011
  19. Cheong, J. J. and Y. D. Choi (2003) Methyl jasmonate as a vital substance in plants. Trends Genet. 19: 409-413. https://doi.org/10.1016/S0168-9525(03)00138-0
  20. Su, E. Z., T. Xia, L. P. Gao, and Z. Zhang (2010) Immobilization of beta-glucosidase and its aroma-increasing effect on tea beverage. Food Bioprod. Process. 88: 83-89. https://doi.org/10.1016/j.fbp.2009.04.001
  21. Takeo. T. (1981) Black tea aroma and its formation. Part 2. Variation in amounts of linalool and geraniol produced in tea shoots by mechanical injury. Phytochemistry 20: 2149-2151. https://doi.org/10.1016/0031-9422(81)80104-5
  22. Gunstone, F. D., J. L. Harwood, and F. B. Padley (1984) The Lipid Handbook, 2nd ed., Chapman and Hall, New York, USA. pp. 54-65.
  23. Moon, J. H., N. Watanabe, and K. Sakata (1994) Studies on the aroma formation mechanism of Oolong tea. Biosci. Biotechnol. Biochem. 58: 1742-1744. https://doi.org/10.1271/bbb.58.1742
  24. Wang, D., T. Yoshimura, and K. Kubota (1999) Analysis of glycosidically bound aroma precursors in tea leaves. Biosci. Biotechnol. Biochem. 63: 1631-1633. https://doi.org/10.1271/bbb.63.1631
  25. Kinugasa, H. and T. Takeo (1990) Deterioration mechanism for tea infusion aroma by retort pasteurization. Agr. Biol. Chem. 54: 2537- 2542.
  26. Roscher, R., G. Bringmann, P. Schreier, and W. Schwab (1998) Radiotracer studies on the formation of 2,5-dimethyl-4-hydroxy-3(2H)-furanone in detached ripening strawberry fruits. J. Agric. Food Chem. 46: 1488-1493. https://doi.org/10.1021/jf970659x
  27. Zhou, Y., F. Dong, A. Kunimasa, Y. Zhang, S. Cheng, J. Lu, L. Zhang, A. Murata, F. Mayer, P. Fleischmann, N. Watanabe, and Z. Yang (2014) Occurrence of glycosidically conjugated 1-phenylethanol and its hydrolase primeverosidase in tea (Camellia sinensis) flowers. J. Agric. Food Chem. 62: 8042-8050. https://doi.org/10.1021/jf5022658
  28. Yang, Z., T. Kinoshita, A. Tanida, H. Sayama, A. Morita, and N. Watanabe (2009) Analysis of coumarin and its glycosidically bound precursor in Japanese green tea having sweet-herbaceousodour. Food Chem. 114: 289-294. https://doi.org/10.1016/j.foodchem.2008.09.014
  29. Kinoshita, T., S. Hirata, Z. Yang, S. Baldermann, E. Kitayama, S. Matsumoto, M. Suzuki, P. Fleischmann, P. Winterhalter, and N. Watanabe (2010) Formation of damascenone derived from glycosidically bound precursors in green tea infusions. Food Chem. 123: 601-606. https://doi.org/10.1016/j.foodchem.2010.04.077
  30. Tsuge, S., H. Ohtani, and C. Watanabe (2011) Pyrolysis-GC/MS data book of syn-thetic polymers: pyrograms, thermograms and MS of pyrolyzates, 1st ed., Elsevier, Amsterdam, Netherlands, pp. 112-132.
  31. Vanderhaegen, B., H. Neven, H. Verachtert, and G. Derdelinckx (2006) The chemistry of beer aging. Food Chem. 95: 357-381. https://doi.org/10.1016/j.foodchem.2005.01.006
  32. Yaylayan, V.A. (2003) Recent advances in the chemistry of Strecker degradation and Amadori rearrangement. Food Sci.Tech. Res. 1: 1-6.
  33. Zhen, Y. S., Z. Chen, and S. J. Cheng (2002) Tea: Bioactivity and the rapeutic Potential, Taylor & Francis, New York, USA. pp. 22-29.
  34. Tu, Y., X. Yang, S. Zhang, and Y. Zhu (2012) Determination of theanine and gamma-aminobutyric acid in tea by high performanceliquid chromatography with precolumn derivatization. Chinese J. Chromatogr. 30: 184-189.
  35. Gijs, L., P. Perpete, A. Timmermans, and S. Collin (2000) 3-Methylthiopropionaldehydeas precursor of dimethyl trisulfide in aged beers. J. Agric. Food Chem. 48: 6196-6199. https://doi.org/10.1021/jf0007380
  36. Hofmann, T. and P. Schieberle (1998) 2-Oxopropanal, hydroxy-2-propanone, and 1-pyrroline Important intermediates in the generation of the roast-smelling food flavor compounds 2-acetyl-1-pyrroline and 2-acetyltetrahydropyridine. J. Agric. Food Chem. 46: 2270-2277. https://doi.org/10.1021/jf970990g
  37. Adams, A. and N. de Kimpe (2006) Chemistry of 2-acetyl-1-pyrroline, 6-acetyl-1,2,3,4-tetrahydropyridine, 2-acetyl-2-thiazoline, and 5-acetyl-2,3-dihydro-4H-thiazine: extraordinary Maillard flavor compounds. Chem. Rev. 106: 2299-2319. https://doi.org/10.1021/cr040097y
  38. Yvon, M. and L. Rijnen (2001) Cheese flavour formation by amino acid catabolism. Int. Dairy J. 11: 185-201. https://doi.org/10.1016/S0958-6946(01)00049-8
  39. Song, D. U., Y. D. Jung, K. O. Chay, M. A. Chung, K. H. Lee, S. Y. Yang, B. A. Shin, and B. W. Ahn (2002) Effect of drinking green tea onage-associated accumulation of Maillard-type fluorescence and carbonyl groups in rat aortic and skin collagen. Arch. Biochem. Biophys. 397: 424-429. https://doi.org/10.1006/abbi.2001.2695