DOI QR코드

DOI QR Code

An Analysis of Preservice Earth Science Teachers' Mental Models about Coriolis Force Concept

예비 지구과학 교사의 전향력 개념에 대한 정신모형 변화 분석

  • Received : 2016.04.04
  • Accepted : 2016.05.24
  • Published : 2016.06.30

Abstract

The purpose of this study is to investigate preservice earth science teachers' mental models through applications of Coriolis force experiment apparatus. After the root of preconception was examined by face to face interviews based on the questionnaire, five preservice earth science teachers were finally selected for this study. The mental models about concept of Coriolis force was classified into naive mental model, static unstable mental model, dynamic unstable mental model, and scientific mental model through the result of individual interviews and their drawings. According to the mental model analysis about Coriolis' force conception, students C and M showed naive mental model about concept of Coriolis force before experiment. After the experiment, student M's model changed to static unstable mental model. Student C's model improved to dynamic unstable mental model. In adiition, students D and O's model improved from static unstable mental model to dynamic unstable mental model. In the case of student B, the dynamic unstable mental model was maintained after the experiment, however, student B's preconception changed to scientific concept. It turned out that a change occurred from low mental model level to integrated mental model after the application of the developed Coriolis' force experiment apparatus. According to the results, national curriculum is similar to static unstable mental model and the result of developed Coriolis' force experiment apparatus is similar to dynamic unstable mental model. It is suggested that it become the theoretical foundation to develop more comfortable and advanced Coriolis force experiment apparatus by improving the experiment apparatus.

이 연구의 목적은 연구자가 개발한 전향력 실험 장치를 통해 예비 지구과학 교사들이 가진 정신모형의 변화를 알아보는 것이다. 예비 지구과학 교사 5명을 대상으로 전향력에 대하여 질문지에 제시된 그림 그리기와 면담을 통해 전향력 실험 장치를 활용한 활동을 수행하기 전과 후의 정신모형을 조사하고 그 변화를 비교하였다. 정신모형 수준이 낮은 단계인 소박한 정신모형이었던 두 학생은 개발된 전향력 실험 장치를 통한 활동을 통해 정적 불안정 모형과 동적 불안정 모형으로 향상되었다. 그리고 활동 전 정적 불안정 모형을 보여주었던 두 학생은 활동 후 모두 동적 불안정 모형으로 변화하였다. 마지막으로 활동 전 동적 불안정 모형을 보여주었던 학생은 활동 후에도 동적 불안정 모형에 남아있었지만 이미 가지고 있었던 선개념이 과학적 개념으로 많이 변화한 모습을 보여주었다. 이 연구를 통해 개발된 전향력 실험 장치 활용이 학생들의 전향력 개념의 학습에서 안정적이고 과학적인 개념 형성에 효과적이었음을 확인할 수 있었다. 개발된 전향력 실험 장치가 학교 현장에서 전향력과 관련된 수업에 효과적으로 사용될 필요가 있으며 나아가 위의 예비 지구과학 교사들이 교사가 되어 학교 현장에서 학생들을 가르치는 동안 나타나는 정신모형의 변화에 대해서도 알아볼 필요가 있다.

Keywords

References

  1. Anderson, A., Howe, C. J., & Tolmie, A. (1996). Interaction and mental models of physics phenomena: evidence from dialogue between learners. In J. Oakhill & A. Garnham (eds.), Mental Models in Cognitive Science: Essays in Honour of Phil Johnson-Laird (pp. 247-273). Hove: Lawrence Erlbaum Associates.
  2. Anderson, C. W., & Smith, E. L. (1986). Children's conceptions of light and color: Understanding the role of unseen rays(report No.400-81-0014). East Lansing, MI: Institute for Research on Teaching. (ERIC reproduction document No. ED 270 318).
  3. Borges, A. T., & Gilbert, K. (1999). Mental models of electricity. International journal of science education, 21(1), 95-117. https://doi.org/10.1080/095006999290859
  4. Brewer, W. F. (2005). Mental models. University of Illinois at Urbana-Champaign.
  5. Chi, M. T. (1998). The nature of naive explanations of natural selection. International journal of science education, 20(10), 1231-1256. https://doi.org/10.1080/0950069980201005
  6. Chinn, C. A., & Brewer, W. F. (1998). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of educational research. 63(1), 1-49. https://doi.org/10.3102/00346543063001001
  7. Choi, S. (1992). Understanding of astronomy for teachers. Seoul: SNU Press.
  8. Coll, R. K., & Treagust, D. F. (2003). Learners'mental models of metallic bonding: A cross-age study. Science Education, 87(5), 685-707. https://doi.org/10.1002/sce.10059
  9. Craik, K. (1943). The Nature of Exploration. England, Cambridge University Press.
  10. Gibbons, A. S. (2001). Model-Centered Instruction. Journal of Structural Learning and Intelligent Systems, 14, 511-540.
  11. Gilbert, J. K., & Boulter, C. J. (1998). Learning science through models and modelling. In K. Tobin., & B. Frazer. (eds.). The International Handbook of Science Education, 53-66. Dordrecht: Kluwer.
  12. Gilbert, J. K., & Boulter, C. J. (2000). Developing models in science education. Dordrecht: Kluwer Academic Publishers.
  13. Glynn, S. (2004). Guidelines for Drawing mental models Retrieved from http://www.coe.uga.edu/edpshch/faculty/glynn/guidelines/
  14. Gobet, J. D. (2005). The effects of different learning tasks on model-building in plate tectonics: Diagramming versus explaining. Journal of Geoscience Education, 53(4), 444-455. https://doi.org/10.5408/1089-9995-53.4.444
  15. Halford, G. S. (1993). Children's understanding: The development of mental models. Hillsdale, NJ: Lawrence Erlbaum Associates.
  16. Hwang, S. (2001). Science experiments and hands-on training captain criticism. Seoul : Sigma Press
  17. Jang, S., Park, H., Jo, K., & Moon, B. (2011). Assisting high school students to redefine the principle of coriolis force. Journal of the korean earth science society, 32(1), 73-83. https://doi.org/10.5467/JKESS.2011.32.1.73
  18. Jeong, G. (2007). Investigation of high school students' mental models about the earth's interior. Journal of the korean earth science society, 28(6), 643-652.
  19. Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard University Press.
  20. Jones, C. M. (1995). Construction of a mental model. In R. F. Lorch, JR., & E. J. O'Brien. (eds.). Source of coherence in reading. Hillsdale, NJ: Lawrence Erlbaum Associates.
  21. Kim, E., Lee, S., Yoon, I., & Lee, H. (2009). Development of experimental apparatus to efficiently educate the phenomena by coriolis force. Journal of the korean earth science society, 30(6), 787-798. https://doi.org/10.5467/JKESS.2009.30.6.787
  22. Lawrenz, F. (1986). Relationships among student, teacher, and observer perceptions of science classrooms and student achievement. School Science and Mathematics, 86(8), 654-660. https://doi.org/10.1111/j.1949-8594.1986.tb11669.x
  23. Lee, H., Jo, H., & Lee, H. (2007). An analysis of undergraduate students' mental models on the mechanism of the moon craters formation. Journal of the Korean Earth Science Society, 28(6), 653-670.
  24. Lee, H., Kwon, H., Park, K., and Lee, H., 2013, An instrument development and validation for measuring high school students' systems thinking. Journal of the Korean Association for Science Education, 33, 995-1006. https://doi.org/10.14697/jkase.2013.33.5.995
  25. Lee, K. (2006). Investigation of mental models about tide for scientifically talented middle school students by analyzing facet of conceptual types by context. Journal of the korean earth science society, 27(1), 6-14.
  26. Lee, K. (2008). Pre-service teachers' understandings on earth science concept needed for an integrated approach: exploring mental models about eclipse phenomena by analyzing phenomenological primitives and facets. Journal of the korean earth science society, 29(4), 352-362. https://doi.org/10.5467/JKESS.2008.29.4.352
  27. Libarkin, J. C., Beilfuss, M., & Kurdziel, J. (2003). Research methodologies in science education: Mental models and cognition in education, Journal of Geoscience Education, 51(1), 121-126.
  28. Lillo, J. (1994). An analysis of the annotated drawings of the internal structure of the earth made by students aged 10-15 from primary and secondary schools in Spain. Teaching Earth Science, 19(3), 83-89.
  29. Miller, A., Thompson, J. C., Peterson, R. E., & Haragan, D. R. (1983). Elements of meteorology(4th ed.), (pp. 106-113). Columbus, OH: Charles E. Merril Publishing Company.
  30. Mortimer, E. F. (1995). Conceptual change or conceptual profile change? Science & Education, 4(3), 267-285. https://doi.org/10.1007/BF00486624
  31. Nelson, B. D., Aron, R. H., & Francek, M. A. (1992). Clarification of selected misconceptions in physical geography. Journal of Geography, 91(2), 76-80. https://doi.org/10.1080/00221349208979083
  32. Nelson, B. D., Aron, R. H., Francek, M. A., & Bisard, W. J. (1994). Atmospheric misconceptions. The Science Teacher, Jan, 31-33.
  33. Norman, D. A. (1983). Some observations on mental models. In D. Gentner., & A. L. Stevens. (eds.). Mental models. Hillsdale, NJ: Lawrene Erlbaum Associates, 7-14.
  34. Novak, J., & Gowin, D. B. (1984). Learning how to learn. New York: Cambridge University Press.
  35. Oh, J., & Kim, Y. (2006). Preservice elementary teacher mental models about astronomical phenomena: seasons and moon phases. Journal of the korean association for science education, 26(1), 68-87.
  36. Osborne, R., & Freyberg, P. (eds.). (1985). Learning in Science: The Implications of "Children's Science". London: Heinemann.
  37. Park, G., Gu, Y., Choi, B., Shin, A., Lee, G., & Go, S. (2005). The effects of microcomputer-based laboratory learning on the acquisition of boiling point concept by middle school students. Journal of the korean association for science education, 25, 867-872.
  38. Park, J., & Lee, K. (2004). Understanding students' conceptions in the research on conceptual change in science: from misconception to mental model. Journal of the korean association for science education, 24(3), 621-637.
  39. Park, J., Lee, K., Shin, J., & Song, S. (2006). What changed and unchanged after science class: analyzing high school student's conceptual change on circular motion based on mental model theory. Journal of the korean association for science education, 26(4), 475-491.
  40. Park, J., & Lee, K. (2008). The Effect of 4M Learning Cycle Teaching Model based on the Integrated Mental Model Theory: Focusing on Learning Circular Motion of High School Students. Journal of the korean association for science education, 28(4), 302-315.
  41. Park, S. (2009). An analysis of high school students' mental models on the plate boundaries. Journal of the korean association for science education, 30(1), 111-126.
  42. Park, S. (2011). An Analysis of the Mental Models of Middle School Students with Different Learning Style on Plate Tectonics. Journal of the korean association for science education, 31(5), 734-744.
  43. Park, S. (2015). Analysis on the Argumentation Pattern and Level of Students' Mental Models in Modeling-based Learning about Geological Structures. Journal of the korean association for science education, 35(5), 919-929. https://doi.org/10.14697/jkase.2015.35.5.0919
  44. Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211-227. https://doi.org/10.1002/sce.3730660207
  45. Raia, F. (2005). Student's understanding of complex dynamic systems. Journal of Geoscience Education, 53(2), 297-308. https://doi.org/10.5408/1089-9995-53.3.297
  46. Reigeluth, C. (1999). Instructional design theories and models: A New Paradigm of Instructional Theory. NJ: Lawrence Erlbaum Associates.
  47. Ross, D. A. (1995). Introduction to Oceanography. New York: Harper Collins College Publishers.
  48. Rouse, W. B., & Morris, N. M. (1986). On looking into the black box: Prospects and limits in the search for mental models. Psychological Bulletin, 100(3), 349-363. https://doi.org/10.1037/0033-2909.100.3.349
  49. Rumelhart, D. E., & Norman, D. A. (1978). Accretion, tuning and restructuring: Three modes of learning. In J. W. Cotton., & R. Klatzky. (eds.). Semantic factors in cognition. Hillsdale, NJ: Lawrene Erlbaum Associates.
  50. Salzsieder, J. C. (1994). Exposing the bathtub Coriolis Myth. Physics Teacher, 32(2), 107-119. https://doi.org/10.1119/1.2343918
  51. Schwartz, D. L., & Glack, J. (1996). Analog imagery in mental model reasoning: Depictive models. Cognitive Psychology, 30, 154-219. https://doi.org/10.1006/cogp.1996.0006
  52. Secco, R. A. (1999). Coriolis-Effect Demonstration on an Overhead Projector. The Physics Teacher, 37, 244-245. https://doi.org/10.1119/1.880248
  53. Seel, N. M. (2003). Model-centered learning and instruction. Technology, Instruction, Cognition, and Learning, 1(1), 59-86.
  54. Segar, D. A. (1997). Introduction to Ocean Sciences.(pp. 31-43). Belmont, CA: Wadsworth Thompson Learning.
  55. Shapiro, A. H. (1962). Bath-tub vortex. Nature, 196(4859), 1080-1081.
  56. Sinatra, G. M., & Pintrich, P. R. (eds.). (2003). Intentional Conceptual Change. NJ: Lawrence Erlbaum Associates.
  57. Sung, N., Choe, S. (2008). A Comparative Study of Knowledge Intergration in the textbook and Students' Mental Model about the Phases of the moon. Journal of the korean earth science society, 29(2), 163-174. https://doi.org/10.5467/JKESS.2008.29.2.163
  58. Symon, K. R. (1971). Mechanics, Addison-Wesley Publishing Company. Cambridge, USA.
  59. Thumm, W. (1976). The case of Coriolis force. The Physics Teacher, (pp. 48-49).
  60. Thurman, H. V. (1994). Introductory Oceanography(7th ed.). New York: Macmillian Publishing Company.
  61. Trefethen, L. M., Bilger, R. W., Fink, P. T., Luxton, R. E. & Tanner, R. I. (1965). The bath-tub vortex in the southern hemisphere. Nature, 207(5001), 1084-1085. https://doi.org/10.1038/2071084a0
  62. Venville, G. J., & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching, 35(9), 1031-1055. https://doi.org/10.1002/(SICI)1098-2736(199811)35:9<1031::AID-TEA5>3.0.CO;2-E
  63. Vosniadou, S. (1991). Conceptual Development in Astronomy. In S. M. Glynn., R. H. Yeany., & B. K. Britton. (eds.). The Psychology of Learning Science. Hillsdale, NJ: Lawrence Erlbaum Associates, 149-177.
  64. Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual in childhood. Cognitive Psychology, 24(4), 535-585. https://doi.org/10.1016/0010-0285(92)90018-W
  65. Vosniadou, S., & Ioannides, C. (1998). From conceptual development to science education: a psychological point of view. International Journal of Science Education, 20(10), 1213-1230. https://doi.org/10.1080/0950069980201004
  66. Wie, J., Jang, S., & Moon, B. (2012). Development of an experimental method for understanding the effects of the coriolis force on the typhoon genesis and its movement. Journal of the korean earth science society, 33(6), 544-553. https://doi.org/10.5467/JKESS.2012.33.6.544
  67. Wilson, J. R., & Rutherford, A. (1989). Mental models: Theory and application in human factors. Human Factors, 31(6), 617-634. https://doi.org/10.1177/001872088903100601

Cited by

  1. Instructional effects of mobile flashcard and assessment app use in a preservice teacher education course vol.29, pp.2, 2016, https://doi.org/10.17927/tkjems.2017.29.2.443
  2. 과학교육에서 모델과 모델링 관련 국내 과학 교육 연구 동향 분석 vol.37, pp.4, 2016, https://doi.org/10.14697/jkase.2017.37.4.539
  3. A Case Study of Geographical Concept Change in Elementary School Students Using Mental Model Theory vol.26, pp.4, 2016, https://doi.org/10.17279/jkagee.2018.26.4.1
  4. 2015 개정 교육과정 초등학교 과학 교과서에 제시된 개념과 탐구 활동의 개선 방안 조사 - 지구과학 영역을 중심으로 - vol.44, pp.3, 2016, https://doi.org/10.21796/jse.2020.44.3.300