DOI QR코드

DOI QR Code

Wolbachia-mediated Reproductive Alterations in Arthropod Hosts and its use for Biocontrol Program

볼바키아 세균에 의한 절지동물 기주의 생식적 변화와 생물적방제 프로그램에 이용 방안

  • Rostami, Elahe (Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University) ;
  • Madadi, Hossein (Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University) ;
  • Abbasipour, Habib (Department of Plant Protection, Faculty of Agricultural Sciences, Shahed University) ;
  • Sivaramakrishnan, Shiva (Department of Biotechnology and Genetic Engineering, Bharathidasan, University of Tiruchirappalli)
  • Received : 2015.08.23
  • Accepted : 2016.03.05
  • Published : 2016.06.01

Abstract

The alpha-proteobacterium Wolbachia is one of the most important intracellular symbionts of arthropods. This Gram-negative bacterium is involved in many biological processes and is currently considered as a potential tool for biological control. Wolbachia is a cytoplasmic bacterium, maternally transferred through generations, and to facilitate its success, it has evolved several strategies that manipulate its host reproductive system to increase the number of infected individuals in the host population. The variety of Wolbachia was first recognized using genes wsp, 16S rRNA, ftsZ, gltA and groEL as molecular markers while strain genotypes of Wolbachia are determined of Multilocus sequence typing (MLST) and sequence of amino acid in region, hyper variable regions (HVRs) in protein WSP. Possible uses of the bacteria and their predominant phenotypes in control programs for agricultural pests and human disease vectors have been considered. Phenotypes are known to induce cytoplasmic incompatibility (CI), parthenogenesis induction (PI), feminization (F) and male killing (MK). Finally, applications of the bacterium in control programs of agricultural and medical insect pests have been discussed.

알파 프로테박테리아(${\alpha}-proteobacterium$)인 볼바키아(Wolbachia) 세균은 절지동물 세포내의 중요한 공생균 중의 하나이다. 그람 음성 세균인 이 공생균은 기주동물의 여러 생물적 과정에 관여하고 있으며, 현재 생물적 방제 수단으로 주목 받고 있다. 볼바키아는 기주 세포의 세포질에 서식하는 세균인데 암컷을 통하여 세대간 전염된다. 볼파키아의 감염 개체 밀도를 높이기 위해 기주의 생식방식을 조작하는 다양한 전략을 발달시켰다. 볼바키아 유전자형 계통은 볼바키아 표면 단백질(WSP)의 고변이영역 아미노산 서열과 복합좌위 서열 타이핑(Multilocus sequence typing, MLST)으로 결정된다. 상이한 유전계통 판별은 wsp, 16S rRNA, ftsZ, gltA, groEL 등 유전자 분자표지를 이용하게 된다.. 이 계통 볼바키아 세균과 그들의 우월한 표현형이 농업해충과 인간의 질병매개 곤충에 대한 방제 프로그램에서 이용 가능성이 고려되고 있다. 볼바키아 표현형들은 세포질불일치(cytoplasmic incompatibility, CI), 단성생식 유도(parthenogenesis induction, PI), 여성화(feminization, F), 수컷치사(male killing, MK) 등을 유발하는 것으로 알려져 있다. 기타 볼바키아 세균의 농업과 위생곤충 방제 프로그램에서 응용 방안을 고찰하였다.

Keywords

References

  1. Augustinos, A., Santos-Garcia, D., Dionyssopoulou, E., Moreira, M., Papapanagiotou, A., Scarvelakis, M., Doudoumis, V., Ramos, S., Aguiar, A., Borges, P.A.V., Khadem, A., Latorre, A., Tsiamis, G., Bourtzis, K., 2011. Detection and characterization of Wolbachia infections in natural populations of aphids. Is the hidden diversity fully unraveled? PLoS One 6, 1-11.
  2. Bandi, C., Anderson, T.J., Genchi, C., Blaxter, M.L. 1998. Phylogeny of Wolbachia in filarial nematodes. Proc. Biol. Sci. 265, 2407-2413. https://doi.org/10.1098/rspb.1998.0591
  3. Bandi, C., Dunn, A.M., Hurst, G.D.D., Rigid, T., 2001. Inherited microorganisms, sex-specific virulence and reproductive parasitism. Trends Parasitol. 17, 88-94. https://doi.org/10.1016/S1471-4922(00)01812-2
  4. Beard, C.B., O'Neill, S.L., Tesh, R.B., Richards, F.F., Askoy, S., 1993. Modification of arthropods vector competence via symbiotic bacteria. Parasitol. Today. 9, 179-183. https://doi.org/10.1016/0169-4758(93)90142-3
  5. Bouchon, D., Rigaud, T., Juchault, P., 1998. Evidence for wide spread Wolbachia infection in isopoda crustaceans: molecular idenfication and host feminization. Proc. R. Soc. B. Biol. Sci. 265, 1081-1090. https://doi.org/10.1098/rspb.1998.0402
  6. Braig, H.R., Guzman, H., Tesh, R.B., O'Neill, S.L., 1994. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature. 367, 453-455. https://doi.org/10.1038/367453a0
  7. Brelsfoard, C.L., Dobson, S.L., 2009. Wolbachia-based strategies to control insect pests and disease vectors. Asia Pac. J. Mol. Biol. Biotechno. 17, 55-63.
  8. Chai, H.N., Du, Y.Z., Qiu, B.L., Zhai, B.P., 2011. Detection and phylogenetic analysis of Wolbachia in the Asiatic rice leafroller, Cnaphalocrocis medinalis, in Chinese populations. J. Insect Sci. 11, 1-13.
  9. Charlat, S., Nirgianaki, A., Bourtzis, K., Merot, H., 2002. Evolution of Wolbachia-induced cytoplasmic incompatibility in Drosophila simulans and Drosophila sechellia. Evolution 56, 1735-1742. https://doi.org/10.1111/j.0014-3820.2002.tb00187.x
  10. Dobson, S.L., Marsland, E.J., Veneti, Z., Bourtzis, K., O'Neill, S.L., 2002. Characterization of Wolbachia host cell range via the in vitro establishment of infections. Appl. Environ. Microbiol. 68, 656-660. https://doi.org/10.1128/AEM.68.2.656-660.2002
  11. Farrokhi, S., Ashouri, A., Shirazi, J., Allahyari, H., Huigens, M.E., 2010. A comparative study on the functional response of Wolbachiainfected and uninfected forms of the parasitoid wasp Trichogramma brassicae. J. Insect Sci. 10, 1-11.
  12. Flanders, S.A., 1965. On the sexuality and ratios of hymenopterous populations. Am. Nat. 99, 489-494. https://doi.org/10.1086/282393
  13. Gottlieb, Y., Zechori-Fein, E., Werren, J.H., Karr T.L., 2002. Diploidy restoration in Wolbachia-infected Muscidifrurax uniraptor (Hym., Pteromalidae). J. Invertebr. Pathol 81, 166-174. https://doi.org/10.1016/S0022-2011(02)00149-0
  14. Guruprasad, N.M., Jalali, S.K., Puttaraju, H.P., 2014. Wolbachia-a foe for mosquitoes. Asian Pac. J. Trop. Dis. 4, 78-81.
  15. Hamm, C.A., Handley, C.A., Pike, A., Forister, M.L., Fordyce, J.A., Nice, C.C., 2014. Wolbachia infection and Lepidoptera of conservation concern. J. Insect Sci. 14, 1-8.
  16. Hoerauf, A., Rao, R.U., 2007. Wolbachia: A Bug's life in another bug. Issues in Infectious Diseases, Vol. 5. S. Karger publication, Basel.
  17. Hoerauf, A., Mand, S., Fischer, K., Kruppa, T., Marfo Debrekyei, Y., Debrah, A.Y., Pfarr, K. M., Adjei, O., Buttner, D.W., 2003. Doxy cycline as a novel strategy against bancroftian filariasis-depletion of Wolbachia endosymbionts from Wuchereria bancrofti and stop of micro filaria production. Med. Microbiol. Immunol. 129, 211-216.
  18. Hoerauf, A., Volkmann, L., Hamelmann, C., Adjei, O., Autenrieth, I.B., Fleischer, B., Buttner, D., 2000. Endosymbiotic bacteria in worms as targets for a novel chemotherapy in filariasis. Lancet. 355, 1242-1243. https://doi.org/10.1016/S0140-6736(00)02095-X
  19. Hoffmann, A.A., Montgomery, B.L., Popovici, J., Iturbe-Ormaetxe, I., Johnson, P.H., Muzzi, F., Greenfield, M., 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476, 454-457. https://doi.org/10.1038/nature10356
  20. Hoffmann, A.A., Ross, P.A., Rasic, G., 2015. Wolbachia strains for disease control: ecological and evolutionary considerations. Evolutionary Applications. John Wiley & Sons Ltd., 751-768.
  21. Hoffman, A.A., Turelli, M., 1988. Unidirectional incompatibility in Drosophila simulans: Inheritance, geographic variation and fitness. Genetics 119, 435-444.
  22. Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X.Y., Fukatsu, T., 2010. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. USA 107, 769-774. https://doi.org/10.1073/pnas.0911476107
  23. Hurst, G.D.D., Hurst, L.D., Majerus, M.E.N., 1997. Cytoplasmic sex-ratio distorters. In: Influential passenger: microbes and invertebrate reproduction (Eds. S. L. O'Neill, A. A. Hoffmann, and J. H. Werren) 125-154. Oxford University Press, New York).
  24. Islam, M.S., 2007. Wolbachia-mediated reproductive alterations in invertebrate hosts and biocontrol implication of the bacteria: an update. Univ. J. Zool. Rajshahi Univ. 26, 1-19.
  25. Jeyaprakash, A., Hoy, M.A., 2000. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of 63 arthropod species. Insect Mol. Biol. 9, 393-405. https://doi.org/10.1046/j.1365-2583.2000.00203.x
  26. Kageyama, D., Nishimura, G., Hoshizaki, S., Ishikawa, Y., 2002. Feminizing Wolbachia in an insect Ostrinia furnacalis (Lepidoptera: Crambidae). Heredity 88, 444-449. https://doi.org/10.1038/sj.hdy.6800077
  27. Kambris, Z., Cook, P.E., Phuc, H.K., Sinkins, S.P., 2009. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326, 134-136. https://doi.org/10.1126/science.1177531
  28. Karimi, J. Darsouei, R., 2012. Wolbachia infection among some fruit flies species of Khorasan an attempt using MLST system. 20th Iranian Plant Protection Congress, 868.
  29. Kean, J. Rainey, S.M., McFarlane, M., Donald, C.L., Schnettler, E., Kohl, A., Pondeville, E., 2015. Fighting Arbovirus transmission: Natural and engineered control of vector competence in Aedes mosquitoes. Insects 6, 236-278. https://doi.org/10.3390/insects6010236
  30. Lo, N., Casiraghi, M., Salati, E., Bazzocchi, C., Bandi, C., 2002. How many Wolbachia supergroups exist? Mol. Biol. Evol. 19, 341-346. https://doi.org/10.1093/oxfordjournals.molbev.a004087
  31. Lo, N., Paraskevopoulos, C., Bourtzis, K., O'Neill, S.L., Werren, J.H., Bordenstein, S.R., Bandi, C., 2007. Taxonomic status of the intracellular bacterium Wolbachia pipientis. Int. J. Syst. Evol. Microbiol. 57, 654-657. https://doi.org/10.1099/ijs.0.64515-0
  32. Lusis, J.J., 1947. Some rules of reproduction in populations of Adalia bipunctata: non-male strains in populations. Dokl. Akad. Nauk. SSSR. 57, 951-954.
  33. McMeniman, C.J., Lane, R.V., Cass, B.N., Fong, A.W., Sidhu, M., Wang, Y.F., O'Neill, S.L.,2009. Stable introduction of a lifeshortening Wolbachia infection into the mosquito Aedes aegypti. Science 323, 141-144. https://doi.org/10.1126/science.1165326
  34. Mehrabadi, M., Bandani, A.R., 2008. Biology of Wolbachia and mechanisms of induced cytoplasmic incompatibility (CI) in insects. 23th International Congress of Entomology, Durban, South Africa.
  35. Moreira, L.A., Iturbe-Ormaetxe, I., Jeffery, J.A., Lu, G.J., Pyke, A.T., Hedges, L.M., Rocha, B.C., 2009. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 139, 1268-1278. https://doi.org/10.1016/j.cell.2009.11.042
  36. O'Connor, L., Plichart, C., Sang, A.C., Brelsfoard, C.L., Bossin, H.C., Dobson, S.L., 2012. Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment. PLoS Negl. Trop. Dis. 6, e1797. https://doi.org/10.1371/journal.pntd.0001797
  37. O'Neill, S.L., Pettigrew, M.M., Sinkins, S.P., Braig, H.R., Andreadis, T.G. Tesh, R.B., 1997. In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect Mol. Biol. 6, 33-39. https://doi.org/10.1046/j.1365-2583.1997.00157.x
  38. Parvizi, P., Fardid, F., Amirkhani, A., 2010. Isolation process of the intracellular Rickettsia bacterium Wolbachia pipientis in Phlebotomus papatasis and fly in Iran. Iran. J. Med. Microbiol. 4, 53-60.
  39. Peng, Y., Wang, Y., 2009. Infection of Wolbachia may improve the olfactory response of Drosophila. Chinese Sci. Bull. 54,1369-1375.
  40. Poinsot, D., Charlat, S., Mercot, H., 2003. On the mechanism of Wolbachia-induced cytoplasmic incompatibility: confronting the models with the facts. BioEssays 25, 259-265. https://doi.org/10.1002/bies.10234
  41. Rasic, G., Endersby, N.M., Williams, C., Hoffmann, A.A., 2014. Using Wolbachia-based releases for suppression of Aedes mosquitoes: insights from genetic data and population simulations. Ecol. Appl. 24, 1226-1234. https://doi.org/10.1890/13-1305.1
  42. Rigaud, T., Juchault, P., 1995. Success and failure of horizontal transfer of feminizing Wolbachia endosymbionts in woodlice. J. Evol. Biol. 8, 249-255. https://doi.org/10.1046/j.1420-9101.1995.8020249.x
  43. Ros, V.D., Fleming, V.M., Feil, E.J., Breeuwer, J.A.J., 2009. How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). Appl. Environ. Microbiol. 75, 1036-1043. https://doi.org/10.1128/AEM.01109-08
  44. Ros, V.D., Fleming, V.M., Feil, E.J., Breeuwer, J.A.J., 2012. Diversity and recombination in Wolbachia and Cardinium from Bryobia spider mites. BMC Microbiol. 12, 1-15. https://doi.org/10.1186/1471-2180-12-1
  45. Rousset, F., Stordeur, E.D., 1994. Properties of Drosophila simulans strain experimentally infected by different clones of the bacterium Wolbachia. Heredity 72, 325-331. https://doi.org/10.1038/hdy.1994.48
  46. Silva, I.M.M.S., van-Meer, M.M.M., Roskan, M.M., Hoogenboom, A., Gort, G., Stouthamer, R., 2000. Potential of Wolbachia-infected versus uninfected wasps: Laboratory and greenhouse evaluation of Trichogramma cordubensis and Trichogramma deion strain. Biocontrol Sci. Technol. 10, 223-228. https://doi.org/10.1080/09583150050044501
  47. Sinikin, S.P., van-Meer, C.F., O'Neill, S.L., 1997. The potential application of inherited symbiont systems to pest control. In: Inherited microorganisms and Arthropoda reproduction (Eds. S. L. O'Neill, A. A. Hoffmann, and J. H. Werren) 155-175. Oxford University Press, New York.
  48. Stouthamer, R., 1993. The use of sexual versus asexual wasps in biological control. Entomophaga 38, 3-6. https://doi.org/10.1007/BF02373133
  49. Stouthamer, R., Breeuwer, J.A.J., Hurst, G.D.D., 1999. Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53, 71-102. https://doi.org/10.1146/annurev.micro.53.1.71
  50. Stouthamer, R., Breeuwer, J.A.J., Luck, R.F., Werren, J.H., 1993. Molecular identification of microorganisms associated with parthenogenesis. Nature 361, 66-68. https://doi.org/10.1038/361066a0
  51. Stouthamer, R., Pinto, J.D., Platner, G.R., Luck, R.F., 1990. Taxonomic status of thelytokous froms of Trichogramma. Ann. Entomol. Soc. Am. 83, 475-481. https://doi.org/10.1093/aesa/83.3.475
  52. Stouthamer, R., van Tilborg, M., De-Jong, J.H., Nunney, L., Luck, R.F., 2001. Selfish element maintains sex in natural populations of a parasitoid wasp. Proc. R. Soc. B. 268, 617-622. https://doi.org/10.1098/rspb.2000.1404
  53. Tagami, Y., Miura, K., 2004. Distribution and prevalence of Wolbachia in Japanese populations of Lepidoptera. Insect Mol. Biol. 13, 359-364. https://doi.org/10.1111/j.0962-1075.2004.00492.x
  54. Teixeira, L., Ferreira, A., Ashburner, M., 2008. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PloS Biol. 6, 2753-2763.
  55. Tram, U., Ferree, P.M., Sullivan, W., 2003. Identification of Wolbachia-host interacting factors through cytological analysis. Microbes Infect. 5, 999-1011. https://doi.org/10.1016/S1286-4579(03)00192-8
  56. Tram, U., Fredrick, K., Werren, J.H., Sullivan, W., 2006. Paternal chromosome segregation during the first mitotic division determines Wolbachia-induced cytoplasmic incompatibility phenotype. J. Cell Sci. 119, 3655-63. https://doi.org/10.1242/jcs.03095
  57. Tsillassie, H., Legesse, M., 2007. The role of Wolbachia bacteria in the pathogenesis of on chocerciasis and prospects for control of the disease. Ethiop. Med. J. 45, 213-219.
  58. van Borm, S., Wenseleers, T., Billen, J., Boomsma, J.J., 2001. Wolbachia in leafcutter ants: A widespread symbionts that may induce male killing or incompatible matings. J. Evol. Biol. 14, 805-814.
  59. van Meer, M.M.M., van-Kan, F.J.P.M., Stouthamer, R., 1996. Can Wolbachia micro-injections induce parthenogenesis in sexual insects? Sommeijer, M.J. Francke, P.J., In: Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society (N.E.V.). Netherlands Entomological Society, Plantage Middenlaan 64, 1018 DH Amsterdam 414, Netherlands, 43-44.
  60. Vavre, F., Jong, d. J.H., Stouthamer, R., 2004. Cytogenetic mechanism and genetic consequences of thelytoky in the wasp Trichogramma cacoeciae. Heredity 93, 592-596. https://doi.org/10.1038/sj.hdy.6800565
  61. Walker, T., Johnson, P.H., Moreira, L.A., Iturbe-Ormaetxe, I., Frentiu, F.D., McMeniman, C.J., Leong, Y.S., 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476, 450-453. https://doi.org/10.1038/nature10355
  62. Weeks, A.R., Reynolds, K.T., Hoffmann, A.A., 2002. Wolbachia dynamics and host effects: What has (and has not) been demonstrated? Trends Ecol. Evol. 17, 257-262. https://doi.org/10.1016/S0169-5347(02)02480-1
  63. Wereen, J.H., Boldo, L., Clark, M.E., 2008. Wolbachia manipulators of invertebrate biology. Nat. Rev. Microbiol. 6,741-751. https://doi.org/10.1038/nrmicro1969
  64. Werren, J. H., 1991. The Paternal sex ratio chromosome of Nasonia. Am Nat. 137, 392-402. https://doi.org/10.1086/285172
  65. Werren, J. H., 1997. Biology of Wolbachia. Annu. Rev. Entomol. 42, 587-609. https://doi.org/10.1146/annurev.ento.42.1.587
  66. Werren, J.H., Windsor, D., Guo, L.R., 1995. Distribution of Wolbachia among neotropical arthropods. Proc. R. Soc. B. 262, 197-204. https://doi.org/10.1098/rspb.1995.0196
  67. Zchori-Fein E, Gottlieb, Y., Coll, M., 2000. Wolbachia density and host fitness components in Muscidifrurax uniraptor (Hymenoptera: Pteromalidae). J. Invertebr. Pathol. 72, 267-272.
  68. Zhou, W.G., Rousset, F., O'Neill, S.L., 1998. Phylogeny and PCRbased classification of Wolbachia strains using wsp gene sequences. Proc. R. Soc. B. 265, 509-515. https://doi.org/10.1098/rspb.1998.0324